## Featured Research

from universities, journals, and other organizations

# Mathematical methods predicts movement of oil and ash following environmental disasters

Date:
March 12, 2012
Source:
McGill University
Summary:
For those involved in managing the fallout from environmental disasters like the Deepwater Horizon oil spill, it is essential to have tools that predict how the oil will move, so that they make the best possible use of resources to control the spill. Such tools now appear to be within reach.

Using Lagrangian Coherent Structures scientists at the Univeristy of Miami and McGill University were able to study the internal movements of oil in the Gulf of Mexico, and can use this same methodology in the study of volcanic ash, according to a study published in Proceedings from the National Academy of Sciences.
Credit: UM/RSMAS

Mathematical methods help predict the movement of oil and ash following environmental disasters.

When oil started gushing into the Gulf of Mexico in late April 2010, friends asked George Haller whether he was tracking its movement. That's because the McGill engineering professor has been working for years on ways to better understand patterns in the seemingly chaotic motion of oceans and air. Meanwhile, colleagues of Josefina Olascoaga in Miami were asking the geophysicist a similar question. Fortunately, she was.

For those involved in managing the fallout from environmental disasters like the Deepwater Horizon oil spill, it is essential to have tools that predict how the oil will move, so that they make the best possible use of resources to control the spill. Thanks to work done by Haller and Olascoaga, such tools now appear to be within reach. Olascoaga's computational techniques and Haller's theory for predicting the movement of oil in water are equally applicable to the spread of ash in the air, following a volcanic explosion.

"In complex systems such as oceans and the atmosphere, there are a lot of features that we can't understand offhand," Haller explains. "People used to attribute these to randomness or chaos. But it turns out, when you look at data sets, you can find hidden patterns in the way that the air and water move." Over the past decade, the team has developed mathematical methods to describe these hidden structures that are now broadly called Lagrangian Coherent Structures (LCSs), after the French mathematician Joseph-Louis Lagrange.

"Everyone knows about the Gulf Stream, and about the winds that blow from the West to the East in Canada," says Haller, "but within these larger movements of air or water, there are intriguing local patterns that guide individual particle motion." Olascoaga adds, "Though invisible, if you can imagine standing in a lake or ocean with one foot in warm water and the other in the colder water right beside it, then you have experienced an LCS running somewhere between your feet."

"Ocean flow is like a busy city with a network of roads," Haller says, "except that roads in the ocean are invisible, in motion, and transient." The method Haller and Olascoaga have developed allows them to detect the cores of LCSs. In the complex network of ocean flows, these are the equivalent of "traffic intersections" and they are crucial to understanding how the oil in a spill will move. These intersections unite incoming flow from opposite directions and eject the resulting mass of water. When such an LCS core emerges and builds momentum inside the spill, we know that oil is bound to seep out within the next four to six days. This means that the researchers are now able to forecast dramatic changes in pollution patterns that have previously been considered unpredictable.

So, although Haller wasn't tracking the spread of oil during the Deepwater Horizon disaster, he and Olascoaga were able to join forces to develop a method that does not simply track: it actually forecasts major changes in the way that oil spills will move. The two researchers are confident that this new mathematical method will help those engaged in trying to control pollution make well-informed decisions about what to do.

Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.

Journal Reference:

1. Marνa J. Olascoaga and George Haller. Forecasting sudden changes in environmental pollution patterns. PNAS, March 12, 2012 DOI: 10.1073/pnas.1118574109

McGill University. "Mathematical methods predicts movement of oil and ash following environmental disasters." ScienceDaily. ScienceDaily, 12 March 2012. <www.sciencedaily.com/releases/2012/03/120312152808.htm>.
McGill University. (2012, March 12). Mathematical methods predicts movement of oil and ash following environmental disasters. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/03/120312152808.htm
McGill University. "Mathematical methods predicts movement of oil and ash following environmental disasters." ScienceDaily. www.sciencedaily.com/releases/2012/03/120312152808.htm (accessed July 24, 2014).

## More Earth & Climate News

Thursday, July 24, 2014

### Featured Research

from universities, journals, and other organizations

### Featured Videos

from AP, Reuters, AFP, and other news services

Observation Boat to Protect Cetaceans During Ship Transfer

### Observation Boat to Protect Cetaceans During Ship Transfer

AFP (July 22, 2014)  As part of the 14-ship convoy that will accompany the Costa Concordia from the port of Giglio to the port of Genoa, there will be a boat carrying experts to look out for dolphins and whales from crossing the path of the Concordia. Duration: 01:02 Video provided by AFP
New Orleans Plans to Recycle Cigarette Butts

### New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014)  New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Shark Sightings a Big Catch for Cape Tourism

### Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014)  A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Spectacular Lightning Storm Hits London

### Spectacular Lightning Storm Hits London

AFP (July 19, 2014)  A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP

## Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):

Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

## In Other News

... from NewsDaily.com

Save/Print:
Share:

## Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

## Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

## Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web