Featured Research

from universities, journals, and other organizations

A basic -- and slightly acidic -- solution for hydrogen storage

Date:
March 20, 2012
Source:
DOE/US Department of Energy
Summary:
Sometimes, solutions for hard problems can turn out to be pretty basic. That's especially true researchers where the solution for a hard problem they were working on turned out to be pretty basic ... and also a bit acidic. The hard problem they were working on was how to store hydrogen fuel.

This diagram shows the new catalyst in its protonated and deprotonated states as it reversibly converts hydrogen and CO2 gas to and from liquid formate or formic acid at ambient temperature and pressure. The gases can thereby be stored and transported as a liquid, and used later in carbon-neutral energy applications, simply by adjusting the pH.
Credit: Image courtesy of Brookhave National Laboratory

Sometimes, solutions for hard problems can turn out to be pretty basic. That's especially true for a team of researchers at the Office of Science's Brookhaven National Laboratory (Brookhaven Lab), where the solution for a hard problem they were working on turned out to be pretty basic…and also a bit acidic.

The hard problem they were working on was how to store hydrogen fuel. Hydrogen gas (H2) is a clean and powerful fuel, but it's also extremely light, which makes it difficult and costly to store. It's typically held in high pressure tanks, although researchers at another Office of Science lab recently found a possible way to keep it in naturally-formed frozen cages.

In a paper published March 18th in Nature Chemistry, researchers at Brookhaven Lab led by chemist Etsuko Fujita announced that they had found a safe and reversible way to store hydrogen under mild (and therefore hopefully much more economical) conditions, using a newly developed catalyst.

Their work began by seeing acids and bases in an unconventional way -- as potential carriers of hydrogen fuel. Students often learn about acids and bases as part of their science fair projects. The 'volcanic' reaction of vinegar (a mild acid) and baking soda (a mild base) has given many students an early interest in the sciences. That was true for Jonathan Hull, a lead researcher on the paper, who was intrigued by seeing a similar reaction blow the corks off wine bottles.

However, many acids and bases are actually watery solutions filled with hydrogen. In an acidic solution, the hydrogen atoms wander free. They're usually missing their electron too, which gives them a positive charge (atoms and molecules with either a positive or a negative charge are called ions). In a basic solution, the hydrogen atoms are usually connected with something else, a negative ion of some sort. And yes, when an acid and a base react with each other, they typically create something neutral, like water.

The catalyst created by researchers at Brookhaven Lab connects hydrogen gas and carbon dioxide, "storing" the hydrogen linked to (adduct to) carbon dioxide in a mildly basic solution. The reaction can be reversed -- and the hydrogen fuel released -- by adding a bit of acid. The entire process can be run, and easily reversed, in a watery solution under mild temperatures and pressures with no toxic byproducts, and at a faster rate than any previous catalyst.

As a consequence, Brookhaven Lab's new catalyst might be used in future hydrogen fuel vehicles, though additional testing will be needed to see if it can be economically scaled up to industrial production. It may show up in other high powered systems too -- time and technology will tell.

This new catalyst shows the best of the Office of Science and its labs at work: Researchers taking on truly challenging problems, and finding basic (and sometimes slightly acidic) solutions.


Story Source:

The above story is based on materials provided by DOE/US Department of Energy. The original article was written by Charles Rousseaux. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan F. Hull, Yuichiro Himeda, Wan-Hui Wang, Brian Hashiguchi, Roy Periana, David J. Szalda, James T. Muckerman, Etsuko Fujita. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature Chemistry, 2012; DOI: 10.1038/nchem.1295

Cite This Page:

DOE/US Department of Energy. "A basic -- and slightly acidic -- solution for hydrogen storage." ScienceDaily. ScienceDaily, 20 March 2012. <www.sciencedaily.com/releases/2012/03/120320115731.htm>.
DOE/US Department of Energy. (2012, March 20). A basic -- and slightly acidic -- solution for hydrogen storage. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/03/120320115731.htm
DOE/US Department of Energy. "A basic -- and slightly acidic -- solution for hydrogen storage." ScienceDaily. www.sciencedaily.com/releases/2012/03/120320115731.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins