Featured Research

from universities, journals, and other organizations

Study on swirls to optimize contacts between fluids

Date:
March 21, 2012
Source:
Springer Science+Business Media
Summary:
Physicists who have studied the mixing between two incompatible fluids have found that it is possible to control the undercurrents of one circulating fluid to optimize its exposure to the other.

Physicists who have studied the mixing between two incompatible fluids have found that it is possible to control the undercurrents of one circulating fluid to optimise its exposure to the other.
Credit: Image courtesy of Springer Science+Business Media

A new model gives clues on how to optimize homogeneous feeding of cells in suspension from a liquid nutriments supply in a bioreactor.

Physicists who have studied the mixing between two incompatible fluids have found that it is possible to control the undercurrents of one circulating fluid to optimise its exposure to the other. This work, which is about to be published in EPJ E¹, was performed by Jorge Peixinho from CNRS at Le Havre University, France, and his colleagues from the Benjamin Levich Institute, City University of New York, USA.

The authors compared quantitative experimental observations of a viscous fluid, similar to honey, with numerical simulations. They focused on a fluid, which partially filled the space between two concentric cylinders with the inner one rotating. This system was previously used to study roll coating and papermaking processes. To interpret this seemingly simple system, they factored in interface flows, film spreading, and the formation of free surface cusps -- a phenomenon relevant to fluid mixing, but which is not quantitatively captured by conventional numerical calculation.

The authors observed the presence of several flow eddies, stemming from fluid flowing past the inner cylinder, causing it to swirl, and the appearance of reverse currents including one orbiting around the rotating cylinder and a second underneath. They made the second eddy disappear by increasing the fluid filling or its velocity. This is akin to turning a spoon full of honey fast enough to prevent it from draining.

This model is based on a highly viscous oil combined with air as a top fluid. When combined with a light oil containing nutriments as a top fluid, it could also apply to a suspension of bioreactor cells typically used to produce biotech medicines. Ultimately, it could help identify the right parameters and adequate mixing time scales to ensure that nutriments feed all the cells homogeneously without segregation.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peixinho J., Mirbod M. and Morris J.F. Free surface flow between two horizontal concentric cylinders. European Physical Journal E, 2012 DOI: 10.1140/epje/i2012-12019-8 2

Cite This Page:

Springer Science+Business Media. "Study on swirls to optimize contacts between fluids." ScienceDaily. ScienceDaily, 21 March 2012. <www.sciencedaily.com/releases/2012/03/120321123815.htm>.
Springer Science+Business Media. (2012, March 21). Study on swirls to optimize contacts between fluids. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/03/120321123815.htm
Springer Science+Business Media. "Study on swirls to optimize contacts between fluids." ScienceDaily. www.sciencedaily.com/releases/2012/03/120321123815.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins