Featured Research

from universities, journals, and other organizations

Study on swirls to optimize contacts between fluids

Date:
March 21, 2012
Source:
Springer Science+Business Media
Summary:
Physicists who have studied the mixing between two incompatible fluids have found that it is possible to control the undercurrents of one circulating fluid to optimize its exposure to the other.

Physicists who have studied the mixing between two incompatible fluids have found that it is possible to control the undercurrents of one circulating fluid to optimise its exposure to the other.
Credit: Image courtesy of Springer Science+Business Media

A new model gives clues on how to optimize homogeneous feeding of cells in suspension from a liquid nutriments supply in a bioreactor.

Physicists who have studied the mixing between two incompatible fluids have found that it is possible to control the undercurrents of one circulating fluid to optimise its exposure to the other. This work, which is about to be published in EPJ E¹, was performed by Jorge Peixinho from CNRS at Le Havre University, France, and his colleagues from the Benjamin Levich Institute, City University of New York, USA.

The authors compared quantitative experimental observations of a viscous fluid, similar to honey, with numerical simulations. They focused on a fluid, which partially filled the space between two concentric cylinders with the inner one rotating. This system was previously used to study roll coating and papermaking processes. To interpret this seemingly simple system, they factored in interface flows, film spreading, and the formation of free surface cusps -- a phenomenon relevant to fluid mixing, but which is not quantitatively captured by conventional numerical calculation.

The authors observed the presence of several flow eddies, stemming from fluid flowing past the inner cylinder, causing it to swirl, and the appearance of reverse currents including one orbiting around the rotating cylinder and a second underneath. They made the second eddy disappear by increasing the fluid filling or its velocity. This is akin to turning a spoon full of honey fast enough to prevent it from draining.

This model is based on a highly viscous oil combined with air as a top fluid. When combined with a light oil containing nutriments as a top fluid, it could also apply to a suspension of bioreactor cells typically used to produce biotech medicines. Ultimately, it could help identify the right parameters and adequate mixing time scales to ensure that nutriments feed all the cells homogeneously without segregation.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peixinho J., Mirbod M. and Morris J.F. Free surface flow between two horizontal concentric cylinders. European Physical Journal E, 2012 DOI: 10.1140/epje/i2012-12019-8 2

Cite This Page:

Springer Science+Business Media. "Study on swirls to optimize contacts between fluids." ScienceDaily. ScienceDaily, 21 March 2012. <www.sciencedaily.com/releases/2012/03/120321123815.htm>.
Springer Science+Business Media. (2012, March 21). Study on swirls to optimize contacts between fluids. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/03/120321123815.htm
Springer Science+Business Media. "Study on swirls to optimize contacts between fluids." ScienceDaily. www.sciencedaily.com/releases/2012/03/120321123815.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) — Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins