Featured Research

from universities, journals, and other organizations

Researchers discover a new path for light through metal

Date:
March 27, 2012
Source:
Optical Society of America
Summary:
Researchers have coaxed a thin film of titanium nitride into transporting plasmons, tiny electron excitations coupled to light that can direct and manipulate optical signals on the nanoscale. Titanium nitride's addition to the short list of surface-plasmon-supporting materials, formerly comprised only of metals, could point the way to a new class of optoelectronic devices with unprecedented speed and efficiency.

a) Excitation by light of a surface plasmon-polariton on a thin film of titanium nitride. b) Atomic force microscope image of the surface of titanium nitride film. The mean roughness of the film is 0.5 nm. c) Scanning electron microscopy image of TiN thin film on sapphire. The texture shows multivariant epitaxial (crystalline) growth. Credit:
Credit: Alexandra Boltasseva, Purdue University/Optical Materials Express.

Helping bridge the gap between photonics and electronics, researchers from Purdue University have coaxed a thin film of titanium nitride into transporting plasmons, tiny electron excitations coupled to light that can direct and manipulate optical signals on the nanoscale. Titanium nitride's addition to the short list of surface-plasmon-supporting materials, formerly composed only of metals, could point the way to a new class of optoelectronic devices with unprecedented speed and efficiency.

"We have found that titanium nitride is a promising candidate for an entirely new class of technologies based on plasmonics and metamaterials," said Alexandra Boltasseva, a researcher at Purdue and an author on a paper published March 27 in the Optical Society's (OSA) open-access journal Optical Materials Express. "This is particularly compelling because surface plasmons resolve a basic mismatch between wavelength-scale optical devices and the much smaller components of integrated electronic circuits."

Value of Plasmons

Metals carry electricity with ease, but normally do nothing to transmit light waves. Surface plasmons, unusual light-coupled oscillations that form on the surface of metallic materials, are the exception to that rule. When excited on the surface of metals by light waves of specific frequencies, plasmons are able to retain that same frequency, but with wavelengths that are orders-of-magnitude smaller, cramming visible and near-infrared light into the realm of the nanoscale.

In the world of electronics and optics, that 100-fold contraction is a boon. Circuits that direct the paths of electrons operate on a much smaller scale than optical light waves, so engineers must either rely on small but relatively sluggish electrons for information processing or bulk up to accommodate the zippy photons. Plasmons represent the best of both worlds and are already at the heart of a number of optoelectronic devices. They have not had widespread use, however, due to the dearth of materials that readily generate them and the fact that metals, in most cases, cannot be integrated with semiconductor devices.

Plasmonic Materials

Until now, the best candidates for plasmonic materials were gold and silver. These noble metals, however, are not compatible with standard silicon manufacturing technologies, limiting their use in commercial products. Silver is the metal with the best optical and surface plasmon properties, but it forms grainy, or semi-continuous, thin films. Silver also easily degrades in air, which causes loss of optical signal, making it a less-attractive material in plasmon technologies.

In an effort to overcome these drawbacks, Boltasseva and her team chose to study titanium nitride- a ceramic material that is commonly used as a barrier metal in microelectronics and to coat metal surfaces such as medical implants or machine tooling parts- because they could manipulate its properties in the manufacturing process. It also could be easily integrated into silicon products, and grown crystal-by-crystal, forming highly uniform, ultrathin films- properties that metals do not share.

To test its plasmonic capabilities, the researchers deposited a very thin, very even film of titanium nitride on a sapphire surface. They were able to confirm that titanium nitride supported the propagation of surface plasmons almost as efficiently as gold. Silver, under perfect conditions, was still more efficient for plasmonic applications, but its acknowledged signal loss limited its practical applications.

To further improve the performance of titanium nitride, the researchers are now looking into a manufacturing method known as molecular beam epitaxy, which would enable them to grow the films and layered structures known as superlattices crystal-by-crystal.

Technologies and Potential Applications

In addition to plasmonics, the researchers also speculate that titanium nitride may have applications in metamaterials, which are engineered materials that can be tailored for almost any application because of their extraordinary response to electromagnetic, acoustic, and thermal waves. Recently proposed applications of metamaterials include invisibility cloaks, optical black holes, nanoscale optics, data storage, and quantum information processing.

The search for alternatives to noble metals with improved optical properties, easier fabrication and integration capabilities could ultimately lead to real-life applications for plasmonics and metamaterials.

"Plasmonics is an important technology for nanoscale optical circuits, sensing, and data storage because it can focus light down to nanoscale," notes Boltasseva. "Titanium nitride is a promising candidate in the near-infrared and visible wavelength ranges. Unlike gold and silver, titanium nitride is compatible with standard semiconductor manufacturing technology and provides many advantages in its nanofabrication and integration."

According to the researchers, titanium nitride-based devices could provide nearly the same performance for some plasmonic applications. While noble metals like silver would still be the best choice for specific applications like negative index metamaterials, titanium nitride could outperform noble metals in other metamaterial and transformation optics devices, such as those based on hyperbolic metamaterials.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, Alexandra Boltasseva. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Optical Materials Express, 2012; 2 (4): 478 DOI: 10.1364/OME.2.000478

Cite This Page:

Optical Society of America. "Researchers discover a new path for light through metal." ScienceDaily. ScienceDaily, 27 March 2012. <www.sciencedaily.com/releases/2012/03/120327124900.htm>.
Optical Society of America. (2012, March 27). Researchers discover a new path for light through metal. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2012/03/120327124900.htm
Optical Society of America. "Researchers discover a new path for light through metal." ScienceDaily. www.sciencedaily.com/releases/2012/03/120327124900.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins