Featured Research

from universities, journals, and other organizations

Powerhouse in the Crab Nebula: MAGIC telescopes observe pulsar at highest energies yet and strongly challenge current theories

Date:
March 28, 2012
Source:
Max Planck Institute for Physics
Summary:
The pulsar at the center of the famous Crab Nebula is a veritable bundle of energy. Astronomers observed the pulsar in the area of very high energy gamma radiation from 25 up to 400 gigaelectronvolts (GeV), a region that was previously difficult to access with high energy instruments, and discovered that it actually emits pulses with the maximum energy of up to 400 GeV -- 50 to 100 times higher than theorists thought possible. These latest observations are difficult for astrophysicists to explain.

The illustration shows the Crab Nebula as seen through an optical telescope (left) and an X-ray telescope (middle), with a graphic representation of the pulsar's magnetic field (right). The light curve (bottom) shows the regular emission of gamma rays at intervals of 0.0337 seconds, or two pulses per rotation. For clarity two periods are shown.
Credit: NASA, ESA, J. Hester, A. Loll, CXC, SAO, F. Seward et al., MAGIC Collaboration

The pulsar at the centre of the famous Crab Nebula is a veritable bundle of energy. This was now confirmed by the two MAGIC (Major Atmospheric Gamma-Ray Imaging Cherenkov) Telescopes on the Canary island of La Palma. They observed the pulsar in the area of very high energy gamma radiation from 25 up to 400 gigaelectronvolts (GeV), a region that was previously difficult to access with high energy instruments, and discovered that it actually emits pulses with the maximum energy of up to 400 GeV -- 50 to 100 times higher than theorists thought possible.

These latest observations are difficult for astrophysicists to explain. "There must be processes behind this that are as yet unknown," says Razmik Mirzoyan, project head at the Max Planck Institute of Physics.

The neutron star in the Crab Nebula is one of the best known pulsars. It rotates around its own axis 30 times every second and has a magnetic field of 100 million Tesla, over a trillion times stronger than that of Earth. The pulsar powers the surrounding famous Crab Nebula, located about 6000 light-years from Earth in the constellation of Taurus. Both the pulsar and the nebula are remnants of a supernova which exploded in July 1054 AD and was visible to the naked eye even by daylight for 23 days.

Neutron stars are extremely dense spheres made of nuclear material. Their mass is similar to that of the sun, but they have diameters of just 20 kilometres. But what makes a neutron star a pulsar, of which astrophysicists have detected some 2000 in our Milky Way galaxy? Neutron stars have an extremely regular and very short rotation period or "day," ranging from one millisecond to ten seconds. While rotating, the star constantly emits charged particles, mainly electrons and positrons (positively charged electrons) and electromagnetic radiation.

These particles move along magnetic field lines that rotate at the same speed as the neutron star itself, giving off beams almost everywhere in the electromagnetic spectrum, from radio wavelengths to gamma rays. If one of these beams crosses our line of sight, the star flashes up for a moment, just like the signal from a lighthouse.

A few years ago, the MAGIC telescopes detected gamma rays of energy ≥ 25 GeV from the Crab Pulsar. This was very unexpected since the available EGRET satellite data were showing that the spectrum ceases at much lower energies. However, at the very high energies MAGIC demonstrated to have few orders of magnitudes higher sensitivity compared to the satellite missions. At the time, scientists concluded that the radiation must have been produced at least 60 kilometres above the surface of the neutron star. This is because the high-energy gamma rays are so effectively shielded by the star's magnetic field that a source very close to the star could not be detected. As a consequence that measurement ruled out one of the main theories on high energy gamma-ray emission from the Crab pulsar.

Now the data measured by MAGIC over the course of the past two years show that the pulsed emissions by far exceed all expectations, reaching 400 GeV in extremely short pulses of about a millisecond duration.

The recent measurements by MAGIC, together with those of the orbiting Fermi satellite at much lower energies, provide an uninterrupted spectrum of the pulses from 0.1 GeV to 400 GeV. These clear observational results create major difficulties for most of the existing pulsar theories that predict significantly lower limits for highest energy emission.

A new theoretical model developed by MAGIC team associate Kouichi Hirotani of of the Academia Sinica, Institute of Astronomy and Astrophysics in Taiwan explains the phenomenon with a cascade-like process which produces secondary particles that are able to overcome the barrier of the pulsar's magnetosphere. Another possible explanation posed by Felix Aharonian of the Dublin Institute for Advanced Studies and other researchers links the puzzling emission to the similarly enigmatic physics of the pulsar wind -- a current of electrons, positrons and electromagnetic radiation which ultimately develops into the Crab Nebula.

However, even though the above models are able to provide explanations for the extremely high energy and the shortness of the pulses, further refinements are necessary for achieving a good agreement with observations. Astrophysicists hope that future observations will improve the statistical precision of the data and help solving the mystery. This could shed new light on pulsars and on the Crab Nebula itself, as one of the most studied objects in our Milky Way.


Story Source:

The above story is based on materials provided by Max Planck Institute for Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. MAGIC Collaboration, J. Aleksic et al., R.K. Bock, D. Borla Tridon, E. Carmona, P. Colin, C. Fruck, D. Hδfner, J. Hose, T. Jogler, H. Kellermann, J. Krause, E. Lorenz, D. Mazin, R. Mirzoyan, N. Nowak, R. Orito, D. Paneque, K. Saito, T.Y. Saito, T. Schweizer, M. Shayduk, B. Steinke, H. Takami, M. Teshima, R.M. Wagner. Phase-resolved energy spectra of the Crab pulsar in the range of 50-400GeV measured with the MAGIC telescopes. Astronomy & Astrophysics, 2012 (in press)

Cite This Page:

Max Planck Institute for Physics. "Powerhouse in the Crab Nebula: MAGIC telescopes observe pulsar at highest energies yet and strongly challenge current theories." ScienceDaily. ScienceDaily, 28 March 2012. <www.sciencedaily.com/releases/2012/03/120328090850.htm>.
Max Planck Institute for Physics. (2012, March 28). Powerhouse in the Crab Nebula: MAGIC telescopes observe pulsar at highest energies yet and strongly challenge current theories. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2012/03/120328090850.htm
Max Planck Institute for Physics. "Powerhouse in the Crab Nebula: MAGIC telescopes observe pulsar at highest energies yet and strongly challenge current theories." ScienceDaily. www.sciencedaily.com/releases/2012/03/120328090850.htm (accessed September 23, 2014).

Share This



More Space & Time News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) — An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
NASA's MAVEN Spacecraft Has Finally Reached Mars

NASA's MAVEN Spacecraft Has Finally Reached Mars

Newsy (Sep. 22, 2014) — After a 10-month voyage through space, NASA's MAVEN spacecraft is now orbiting the Red Planet. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) — A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
SpaceX Cargo Ship Blasts Off Toward Space Station

SpaceX Cargo Ship Blasts Off Toward Space Station

AFP (Sep. 21, 2014) — SpaceX's unmanned Dragon cargo ship blasts off toward the International Space Station, carrying a load of supplies and science experiments for the astronauts living there. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins