Featured Research

from universities, journals, and other organizations

Ultrafast laser pulses shed light on elusive superconducting mechanism

Date:
March 29, 2012
Source:
University of British Columbia
Summary:
Physicists have used ultra-fast laser pulses to identify the microscopic interactions that drive high-temperature superconductivity. The researchers were able to capture very fine grained data on the speed of the relaxation process and its influence on the properties of the superconducting system, showing that the high-critical temperature of these compounds can be accounted for by purely electronic (magnetic) processes.

An international team that includes UBC physicists has used ultra-fast laser pulses to identify the microscopic interactions that drive high-temperature superconductivity.

Related Articles


In the experiment,outlined recently in the journal Science, electrons in a prototypical copper-oxide superconductor were excited by extremely short 100-femtosecond (0.0000000000001-second) laser pulses.

As the material's electrons relax back to an equilibrium state, they release their excess energy via deformation of the superconductor's atomic lattice (phonons) or perturbation of its magnetic correlations (spin fluctuations).

The researchers were able to capture very fine grained data on the speed of the relaxation process and its influence on the properties of the superconducting system, showing that the high-critical temperature of these compounds can be accounted for by purely electronic (magnetic) processes.

"This new technique offers us our best window yet on the interactions that govern the formation of these elusive superconducting properties--both across time and across a wide range of characteristic energies," says UBC Associate Professor Andrea Damascelli, Canada Research Chair in Electronic Structure of Solids with the Department of Physics and Astronomy and the UBC Quantum Matter Institute.

"We're now able to begin to disentangle the different interactions that contribute to this fascinating behavior."

Superconductivity--the phenomenon of conducting electricity with no resistance--occurs in some materials at very low temperatures. High-temperature cuprate superconductors are capable of conducting electricity without resistance at temperatures as high as -140 degrees Celsius.

The key mechanism that allows the carriers to flow without resistance in superconductors stems from an effective pairing between electrons. In conventional metallic superconductors, this pairing mechanism is well understood as phonon-mediated. In copper-oxides, the nature of the low-resistance interaction between the electrons has remained a mystery.

"This breakthrough in the understanding of the puzzling properties of copper-oxides paves the way to finally solving the mystery of high-temperature superconductivity and revealing the key knobs for engineering new superconducting materials with even higher transition temperatures," says the paper's lead author Claudio Giannetti, a researcher with Italy's Universitΰ Cattolica del Sacro Cuore and visiting professor at UBC's Quantum Matter Institute.

The international collaboration also involved contributions from Japanese, Swiss and American researchers.

The UBC portion of the research program was funded by the Killam Trusts, the Canada Research Chair program, the Sloan Foundation, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research Quantum Materials program.


Story Source:

The above story is based on materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University of British Columbia. "Ultrafast laser pulses shed light on elusive superconducting mechanism." ScienceDaily. ScienceDaily, 29 March 2012. <www.sciencedaily.com/releases/2012/03/120329142033.htm>.
University of British Columbia. (2012, March 29). Ultrafast laser pulses shed light on elusive superconducting mechanism. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/03/120329142033.htm
University of British Columbia. "Ultrafast laser pulses shed light on elusive superconducting mechanism." ScienceDaily. www.sciencedaily.com/releases/2012/03/120329142033.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins