Featured Research

from universities, journals, and other organizations

Generating first-ever controlled ultrafast radiation using a plasma

Date:
April 4, 2012
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
To observe ultrarapid phenomena such as the motion of electrons within matter, researchers need sources capable of producing extremely fast and energetic light radiation. Although devices capable of emitting pulses with attosecond (10-18 seconds) precision already exist, many research teams are striving to stretch the boundaries of these pulses' duration and intensity.Scientists have now succeeded for the first time in accelerating and guiding electrons in a plasma in a reproducible manner, using a laser.

Experimental set-up. The insert shows the electronic trajectories and the X-UV radiation induced by a laser field of several optical cycles.
Credit: © Antonin Borot

To observe ultrarapid phenomena such as the motion of electrons within matter, researchers need sources capable of producing extremely fast and energetic light radiation. Although devices capable of emitting pulses with attosecond (10-18 seconds) precision already exist, many research teams are striving to stretch the boundaries of these pulses' duration and intensity.

A team headed by the Laboratoire d'Optique Appliquée (LOA, CNRS/ENSTA-Paristech/Ecole Polytechnique), in collaboration with the CEA and the Laboratoire pour l'Utilisation des Lasers Intenses (CNRS/CEA/Ecole Polytechnique/UPMC), has succeeded for the first time in accelerating and guiding electrons in a plasma in a reproducible manner, using a laser. These electrons excite the plasma, which then emits ultrafast electromagnetic pulses at wavelengths in the extreme ultraviolet. This high energy attosecond radiation could be used to study ultrarapid electronic processes.

This work is published in Nature Physics.

Some events, such as the ionization of an atom or an electron jumping from one excited state to another, occur over typical time scales of the order of an attosecond (a billionth of a billionth of a second). To observe such events directly, light pulses of comparable duration need to be produced in order to acquire a "snapshot" of the evolution of the phenomenon, somewhat like a camera shutter. Until now, there was only one way to obtain such fast pulses, by exciting the electrons of a gas by laser. These electrons then emit a pulse in the extreme ultraviolet (X-UV) domain. However, this method has limitations and, in order to observe certain phenomena, researchers need sources that are even faster and, above all, which have higher energy. This has prompted numerous research teams to study the physics of plasmas, an extremely hot and dense state of matter constituted of ions and electrons.

The team headed by the LOA is the first to have obtained attosecond pulses in the X-UV in a reproducible manner by controlling the excitation of a plasma by electrons accelerated in a laser field. To achieve this feat, the researchers first developed a very efficient laser source, making it possible to obtain illuminations one thousand to ten thousand times those used in gaseous media, and delivering a thousand pulses per second, each lasting around several femtoseconds (10-15 seconds). In addition, this source is phase-stabilized: all the pulses generated are identical. The researchers succeeded in focusing the full luminous intensity of the laser on a spot a little larger than a micron in diameter, on the surface of a silica target. The target matter is thus transformed into a plasma whose density is comparable to that of a solid. The electrons in this plasma are strongly accelerated by the electromagnetic field produced by the laser beam. When they pass through the plasma, they excite a collective motion of charges inside it, thus producing X-UV radiation, which the researchers were able to observe and analyze using a spectrometer.

This work should lead to a high-energy radiation source that physicists and chemists could use to probe electronic processes in matter with attosecond temporal resolution. The research team is now planning to improve its laser source in order to generate even faster radiation at shorter wavelengths (in the X-ray domain). This should be achieved by controlling the motion of electrons, which move at velocities close to the speed of light, in the plasma.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Antonin Borot, Arnaud Malvache, Xiaowei Chen, Aurélie Jullien, Jean-Paul Geindre, Patrick Audebert, Gérard Mourou, Fabien Quéré, Rodrigo Lopez-Martens. Attosecond control of collective electron motion in plasmas. Nature Physics, 2012; DOI: 10.1038/nphys2269

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Generating first-ever controlled ultrafast radiation using a plasma." ScienceDaily. ScienceDaily, 4 April 2012. <www.sciencedaily.com/releases/2012/04/120404125102.htm>.
CNRS (Délégation Paris Michel-Ange). (2012, April 4). Generating first-ever controlled ultrafast radiation using a plasma. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/04/120404125102.htm
CNRS (Délégation Paris Michel-Ange). "Generating first-ever controlled ultrafast radiation using a plasma." ScienceDaily. www.sciencedaily.com/releases/2012/04/120404125102.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins