Featured Research

from universities, journals, and other organizations

Generating first-ever controlled ultrafast radiation using a plasma

Date:
April 4, 2012
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
To observe ultrarapid phenomena such as the motion of electrons within matter, researchers need sources capable of producing extremely fast and energetic light radiation. Although devices capable of emitting pulses with attosecond (10-18 seconds) precision already exist, many research teams are striving to stretch the boundaries of these pulses' duration and intensity.Scientists have now succeeded for the first time in accelerating and guiding electrons in a plasma in a reproducible manner, using a laser.

Experimental set-up. The insert shows the electronic trajectories and the X-UV radiation induced by a laser field of several optical cycles.
Credit: © Antonin Borot

To observe ultrarapid phenomena such as the motion of electrons within matter, researchers need sources capable of producing extremely fast and energetic light radiation. Although devices capable of emitting pulses with attosecond (10-18 seconds) precision already exist, many research teams are striving to stretch the boundaries of these pulses' duration and intensity.

A team headed by the Laboratoire d'Optique Appliquée (LOA, CNRS/ENSTA-Paristech/Ecole Polytechnique), in collaboration with the CEA and the Laboratoire pour l'Utilisation des Lasers Intenses (CNRS/CEA/Ecole Polytechnique/UPMC), has succeeded for the first time in accelerating and guiding electrons in a plasma in a reproducible manner, using a laser. These electrons excite the plasma, which then emits ultrafast electromagnetic pulses at wavelengths in the extreme ultraviolet. This high energy attosecond radiation could be used to study ultrarapid electronic processes.

This work is published in Nature Physics.

Some events, such as the ionization of an atom or an electron jumping from one excited state to another, occur over typical time scales of the order of an attosecond (a billionth of a billionth of a second). To observe such events directly, light pulses of comparable duration need to be produced in order to acquire a "snapshot" of the evolution of the phenomenon, somewhat like a camera shutter. Until now, there was only one way to obtain such fast pulses, by exciting the electrons of a gas by laser. These electrons then emit a pulse in the extreme ultraviolet (X-UV) domain. However, this method has limitations and, in order to observe certain phenomena, researchers need sources that are even faster and, above all, which have higher energy. This has prompted numerous research teams to study the physics of plasmas, an extremely hot and dense state of matter constituted of ions and electrons.

The team headed by the LOA is the first to have obtained attosecond pulses in the X-UV in a reproducible manner by controlling the excitation of a plasma by electrons accelerated in a laser field. To achieve this feat, the researchers first developed a very efficient laser source, making it possible to obtain illuminations one thousand to ten thousand times those used in gaseous media, and delivering a thousand pulses per second, each lasting around several femtoseconds (10-15 seconds). In addition, this source is phase-stabilized: all the pulses generated are identical. The researchers succeeded in focusing the full luminous intensity of the laser on a spot a little larger than a micron in diameter, on the surface of a silica target. The target matter is thus transformed into a plasma whose density is comparable to that of a solid. The electrons in this plasma are strongly accelerated by the electromagnetic field produced by the laser beam. When they pass through the plasma, they excite a collective motion of charges inside it, thus producing X-UV radiation, which the researchers were able to observe and analyze using a spectrometer.

This work should lead to a high-energy radiation source that physicists and chemists could use to probe electronic processes in matter with attosecond temporal resolution. The research team is now planning to improve its laser source in order to generate even faster radiation at shorter wavelengths (in the X-ray domain). This should be achieved by controlling the motion of electrons, which move at velocities close to the speed of light, in the plasma.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Antonin Borot, Arnaud Malvache, Xiaowei Chen, Aurélie Jullien, Jean-Paul Geindre, Patrick Audebert, Gérard Mourou, Fabien Quéré, Rodrigo Lopez-Martens. Attosecond control of collective electron motion in plasmas. Nature Physics, 2012; DOI: 10.1038/nphys2269

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Generating first-ever controlled ultrafast radiation using a plasma." ScienceDaily. ScienceDaily, 4 April 2012. <www.sciencedaily.com/releases/2012/04/120404125102.htm>.
CNRS (Délégation Paris Michel-Ange). (2012, April 4). Generating first-ever controlled ultrafast radiation using a plasma. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/04/120404125102.htm
CNRS (Délégation Paris Michel-Ange). "Generating first-ever controlled ultrafast radiation using a plasma." ScienceDaily. www.sciencedaily.com/releases/2012/04/120404125102.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins