Featured Research

from universities, journals, and other organizations

Molecule movements that make us think: Ion channel’s voltage sensor can change its form

Date:
April 24, 2012
Source:
Linköping Universitet
Summary:
Every thought, every movement, every heartbeat is controlled by lightning-quick electrical impulses in the brain, the muscles, and the heart. But too much electrical excitability in the membranes of the cells can cause things like epilepsy and cardiac arrhythmia. A research group has now published new discoveries that can lead to new medicines for these diseases.

Molecular model of ion channel's voltage sensor.
Credit: Image courtesy of Linköping Universitet

Every thought, every movement, every heartbeat is controlled by lightning-quick electrical impulses in the brain, the muscles, and the heart. But too much electrical excitability in the membranes of the cells can cause things like epilepsy and cardiac arrhythmia. A research group at Linköping University has now published new discoveries that can lead to new medicines for these diseases.

The key molecules behind the electrical impulses are voltage-activated ion channels – pores in cell membranes, the opening and closing of which are controlled by the electrical potential between the inside and outside of the cell.

Research over the past few years has revealed the ion channels’ molecular structure, and how the pores change form when they open and close. On the other hand, the mechanism explaining how the electric potential is detected on the molecular level remains unclear.

LiU researchers have now shown how an ion channel’s voltage sensor can change its form. This change of form leads to the pore in the channel opening up.

Ulrike Henrion, Jakob Renhorn, Sara Börjesson, and Erin Nelson, all in Professor Fredrik Elinder’s research group, have succeeded through comprehensive experimental work in identifying 20 different molecular interactions that occur in the voltage sensor’s different states.

In collaboration with Professor Erik Lindahl’s group at the KTH Royal Institute of Technology, and associate professor Björn Wallner at the Department of Physics, Chemistry and Biology at LiU, the group has built five different molecular models of the voltage sensor, which together can explain all the experimental data. The five models were then linked together to a film that shows how a central part of the voltage detector moves between the outer walls of the voltage sensor.

The published work is an important piece of the puzzle in the research group’s quest to develop substances with raised electrical excitability, which hopefully can lead to new medicines for epilepsy and cardiac arrhythmia.


Story Source:

The above story is based on materials provided by Linköping Universitet. Note: Materials may be edited for content and length.


Journal Reference:

  1. U. Henrion, J. Renhorn, S. I. Börjesson, E. M. Nelson, C. S. Schwaiger, P. Bjelkmar, B. Wallner, E. Lindahl and F. Elinder. Tracking a complete voltage-sensor cycle with metal-ion bridges. Proceedings of the National Academy of Sciences, April 2012 (in press)

Cite This Page:

Linköping Universitet. "Molecule movements that make us think: Ion channel’s voltage sensor can change its form." ScienceDaily. ScienceDaily, 24 April 2012. <www.sciencedaily.com/releases/2012/04/120424095706.htm>.
Linköping Universitet. (2012, April 24). Molecule movements that make us think: Ion channel’s voltage sensor can change its form. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/04/120424095706.htm
Linköping Universitet. "Molecule movements that make us think: Ion channel’s voltage sensor can change its form." ScienceDaily. www.sciencedaily.com/releases/2012/04/120424095706.htm (accessed July 22, 2014).

Share This




More Mind & Brain News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Obese Women Have 'Food Learning Impairment'?

Do Obese Women Have 'Food Learning Impairment'?

Newsy (July 18, 2014) — Yale researchers tested 135 men and women, and it was only obese women who were deemed to have "impaired associative learning." Video provided by Newsy
Powered by NewsLook.com
Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Newsy (July 18, 2014) — A new study suggests that mixing alcohol with energy drinks makes you want to keep the party going. Video provided by Newsy
Powered by NewsLook.com
Pot Cooking Class Teaches Responsible Eating

Pot Cooking Class Teaches Responsible Eating

AP (July 18, 2014) — Following the nationwide trend of eased restrictions on marijuana use, pot edibles are growing in popularity. One Boston-area cooking class is teaching people how to eat pot responsibly. (July 18) Video provided by AP
Powered by NewsLook.com
Understanding D.C.'s New Pot Laws

Understanding D.C.'s New Pot Laws

Newsy (July 17, 2014) — Washington D.C.'s new laws decriminalizing small amount of marijuana went into effect Thursday. Here's how they work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins