New! Sign up for our free email newsletter.
Science News
from research organizations

New concept for fast, low-cost DNA sequencing device

Date:
April 24, 2012
Source:
Oak Ridge National Laboratory
Summary:
Researchers have developed a new concept for use in a high-speed genomic sequencing device that may have the potential to substantially drive down costs.
Share:
FULL STORY

Researchers at Oak Ridge National Laboratory and Yale University have developed a new concept for use in a high-speed genomic sequencing device that may have the potential to substantially drive down costs.

"The low cost--if it can be achieved--would enable genomic sequencing to be used in everyday clinical practice for medical treatments and preventions," said Predrag Krstic, project director and former ORNL physicist now at the University of Tennessee-ORNL Joint Institute for Computational Sciences.

The research is part of a nearly decade-long drive by the National Human Genome Research Institute of the National Institutes of Health to support the science needed to bring the cost of sequencing a human genome down to $1,000.

ORNL and Yale University researchers have created nanopores, or extremely narrow channels of water, with a radio-frequency electric field capable of trapping segments of DNA and other biomolecules.

In a paper published in the scientific journal Small, ORNL and Yale University researchers used theory and computation, validated by experiments, to prove that a charged micro or nano particle, such as a DNA segment, can be confined in an "aqueous virtual pore." The water provides a stable environment for DNA integrity while the virtual "walls" allow DNA to move through the nanopore without interacting with physical walls.

As an added advantage, scientists can control the size and stability of a virtual nanopore by external electric fields, something they cannot do with a physical nanopore.

"As a single DNA polymer is translocated through a synthetic nanopore, we use the physical detection of single molecules to read electric signals that identify DNA bases," Krstic said.

To help control and localize DNA, ORNL and Yale scientists created the aqueous nanopore embedded in water based on a linear Paul trap -- a device that traps particles in an oscillating electric field -- and experimentally proved its trapping functionality.

There were some doubts that a charged micro or nano particle could be confined by the quadrupole oscillating electric field of the Paul trap when filled by aqueous solvent, but ORNL computation and Yale experiments prove that water actually helps stabilize trapping mechanisms, making sequencing methods more feasible.

Jae Hyun Park, lead author on the paper, worked at ORNL as Krstic's postdoctoral fellow. In addition to Krstic, co-authors on the paper are Yale University's Mark Reed and Weihua Guan.

The research was supported by the National Human Genome Research Institute of the National Institutes of Health and supercomputing hours on Kraken, the National Science Foundation's National Institute for Computational Sciences supercomputer.


Story Source:

Materials provided by Oak Ridge National Laboratory. Note: Content may be edited for style and length.


Journal Reference:

  1. Jae Hyun Park, Weihua Guan, Mark A. Reed, Predrag S. Krstić. Tunable Aqueous Virtual Micropore. Small, 2012; 8 (6): 907 DOI: 10.1002/smll.201101739

Cite This Page:

Oak Ridge National Laboratory. "New concept for fast, low-cost DNA sequencing device." ScienceDaily. ScienceDaily, 24 April 2012. <www.sciencedaily.com/releases/2012/04/120424120455.htm>.
Oak Ridge National Laboratory. (2012, April 24). New concept for fast, low-cost DNA sequencing device. ScienceDaily. Retrieved April 25, 2024 from www.sciencedaily.com/releases/2012/04/120424120455.htm
Oak Ridge National Laboratory. "New concept for fast, low-cost DNA sequencing device." ScienceDaily. www.sciencedaily.com/releases/2012/04/120424120455.htm (accessed April 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES