Featured Research

from universities, journals, and other organizations

Creating nano-structures from the bottom up

Date:
April 24, 2012
Source:
Duke University
Summary:
Microscopic particles are being coaxed by engineers to assemble themselves into larger crystalline structures by the use of varying concentrations of microscopic particles and magnetic fields.

Microscopic particles are being coaxed by Duke University engineers to assemble themselves into larger crystalline structures by the use of varying concentrations of microscopic particles and magnetic fields.

Related Articles


These nano-scale crystal structures, which until now have been difficult and time-consuming to produce using current technologies, could be used as basic components for advanced optics, data storage and bioengineering, said the research team.

"Not only did we develop the theoretical underpinning for this new technique, but we demonstrated in the lab that we could create more than 20 different programmed structures," said Benjamin Yellen, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering and lead member of the research team. The results of the Duke experiments were published online in the journal Nature Communications.

"Despite the promise of creating new classes of human-made structures, current methods for creating these tiny structures in a reliable and cost-effective way remains a daunting challenge," Yellen said. "This new approach could open pathways for fabricating complex materials that cannot be produced by current techniques."

The traditional method for creating human-made crystals is described as "top-down" by Yellen, which means they are fashioned by lithography or molding techniques, and can't be easily created in three dimensions.

"Our approach is much more 'bottom up,' in that we're starting at the level of a model 'atom' and working our way up," Yellen said.

By manipulating the magnetization within a liquid solution, the Duke researchers coaxed magnetic and non-magnetic particles to form intricate nano-structures, such as chains, rings and lattices.

The nano-structures are formed inside a liquid known as a ferrofluid, which is a solution consisting of suspensions of nanoparticles composed of iron-containing compounds. One of the unique properties of these fluids is that they become highly magnetized in the presence of external magnetic fields. The particles that are less magnetic than the ferrofluid behave similarly to negative charges, whereas the particles that are more magnetic than the ferrofluid act like positive charges. The opposite particles thus attract one another to form structures resembling salt crystals.

Since the magnetization of the fluid and the concentrations of the particles controls how the particles are attracted to or repelled by each other, the researchers were able to control the shapes and patterns of assembly. By appropriately "tuning" these interactions, the magnetic and non-magnetic particles form around each other much like a snowflake forms around a microscopic dust particle.

According to Yellen, researchers have long been able to create tiny structures made up of a single particle type, but the demonstration of sophisticated structures assembling in solutions containing multiple types of particles has been difficult to achieve. The structure of these nano-structures determines how they can ultimately be used.

Yellen foresees the use of these nano-structures in advanced optical devices, such as sensors, where different nano-structures could be designed to possess custom-made optical properties. Yellen also envisions that rings composed of metal particles could be used for antenna designs, and perhaps as one of the key components in the construction of materials that display artificial "optical magnetism" and negative magnetic permeability.

Other members of the team Duke's Karim Khalil, Amanda Sagategui, Mukarram Tahir, Joshua Socolar and Benjamin Wiley.

The research was supported by the Research Triangle Materials Research Science and Engineering Center, which is funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Duke University. The original article was written by Richard Merritt. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karim S. Khalil, Amanda Sagastegui, Yu Li, Mukarram A. Tahir, Joshua E. S. Socolar, Benjamin J. Wiley, Benjamin B. Yellen. Binary colloidal structures assembled through Ising interactions. Nature Communications, 2012; 3: 794 DOI: 10.1038/ncomms1798

Cite This Page:

Duke University. "Creating nano-structures from the bottom up." ScienceDaily. ScienceDaily, 24 April 2012. <www.sciencedaily.com/releases/2012/04/120424120753.htm>.
Duke University. (2012, April 24). Creating nano-structures from the bottom up. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/04/120424120753.htm
Duke University. "Creating nano-structures from the bottom up." ScienceDaily. www.sciencedaily.com/releases/2012/04/120424120753.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins