Featured Research

from universities, journals, and other organizations

Significant water anomaly explained

Date:
May 9, 2012
Source:
Stony Brook University
Summary:
Physicists have just explained a puzzling water anomaly -- a deviation from the common form -- of water ice that has been largely neglected and never before explained.

The figure shows the hexagonal ice crystal and how quantum mechanics modifies the structure with respect to a purely classical crystal. At T=0 the classical crystal is larger than the quantum crystal, but at high temperature (T=200 K) the opposite occurs and the quantum crystal shrinks. This is contrary to any other material, where the quantum crystal always expands, at all temperatures.
Credit: Image courtesy of Stony Brook University

A team of researchers from the Stony Brook University Department of Physics & Astronomy along with colleagues from the Department of Condensed Matter Physics at Universidad Autónoma de Madrid (UAM) in Spain, explain a puzzling water anomaly in a paper published in the May 9 edition of Physical Review Letters entitled, "Anomalous Nuclear Quantum Effects in Ice." The work details an anomaly -- a deviation from the common form -- of water ice that has been largely neglected and never before explained.

"We believe that our study explains a rare, seldom mentioned property of ice which should be included in the list of water anomalies as an example in which quantum effects are anomalous and increase with temperature," said Marivi (Victoria) Fernandez-Serra, an assistant professor in the Department of Physics & Astronomy at Stony Brook, who collaborated with three UAM professors and Stony Brook Professors Philip Allen and Peter Stephens, and PhD student Betuk Pamuk.

In this contribution, the researchers show that the volume of water (H2O) ice depends on the quantum "zero-point" motion of the H and O atoms in an opposite way from "normal" materials. Crystals shrink as they are cooled, but because of "zero-point" motion, shrinking stops before reaching temperatures of absolute zero. This effect is a result of the Heisenberg Uncertainty Principle, which states that there is a fundamental limit on the accuracy with which certain pairs of physical properties can be simultaneously identified -- the more precisely one property is measured, the less precisely the other can be controlled, determined or known.

Less massive atoms are more "quantum," with more zero-point energy. Lighter nuclei need more room to move than heavier nuclei, which translates into larger crystals. At high temperatures, quantum effects become less important, so the volume differences decrease with temperature, noted Fernandez-Serra. The opposite occurs with ice. D2O (deuterated or heavy water) occupies more volume than H2O molecules, a difference that increases with temperature. "In order to access and measure quantum mechanical effects in matter, we usually need to go to very low temperatures, but in water ice some zero-point effects actually become more relevant as the temperature increases," said Fernandez-Serra.

The theoretical model proposed, which is backed by careful computational modeling and an X-ray diffraction experiment at Brookhaven National Laboratory's National Synchrotron Light Source, attributes the effect to the peculiar nature of the hydrogen bond. "In water, quantum mechanics manifests in a very striking way," said Fernandez-Serra. "Its effects are more dominant with increasing temperature, which is rather unexpected."


Story Source:

The above story is based on materials provided by Stony Brook University. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Pamuk, J. M. Soler, R. Ramírez, C. P. Herrero, P. W. Stephens, P. B. Allen, and M.-V. Fernández-Serra. Anomalous Nuclear Quantum Effects in Ice. Phys. Rev. Lett., 108, 193003 (2012) DOI: 10.1103/PhysRevLett.108.193003

Cite This Page:

Stony Brook University. "Significant water anomaly explained." ScienceDaily. ScienceDaily, 9 May 2012. <www.sciencedaily.com/releases/2012/05/120509105210.htm>.
Stony Brook University. (2012, May 9). Significant water anomaly explained. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2012/05/120509105210.htm
Stony Brook University. "Significant water anomaly explained." ScienceDaily. www.sciencedaily.com/releases/2012/05/120509105210.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) — Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins