Featured Research

from universities, journals, and other organizations

Push from Mississippi kept Deepwater Horizon oil slick off shore

Date:
May 10, 2012
Source:
University of Pennsylvania
Summary:
Geoscientists offer an explanation for why the Deepwater Horizon oil spill didn't have the environmental impact that many had feared. Using publicly available datasets, their study reveals that the force of the Mississippi River emptying into the Gulf of Mexico created mounds of freshwater which pushed the oil slick off shore.

Surface slick position. Top: approximate location of the oil slick provided by ESRI for the days (A) 1 May, (B) 9 May, and (C) 31 May 2010, respectively. Blue colors correspond qualitatively to slick intensity, while redืsymbols show locations of oil slick landfall. Bottom: Overlay maps of GoM SSH (from Jason, TOPEX/Poseidon (T/P), Geosat Follow-On (GFO), ERS-2 and Envisat altimeter real-time data - Colorado Center for Astrodynamics Research) and NOAA/AVHRR SST data (Earth Scan Lab - Coastal Studies Institute, Louisiana State University). SSH contour interval is 5 cm; thick contour indicates 0 cm; (D), (E) and (F) correspond to (A), (B) and (C), respectively. Red dot indicates DH site.
Credit: Falcini et al; doi/10.1371/journal.pone.0036037.g001

When the Deepwater Horizon drilling rig exploded April 20, 2010, residents feared that their Gulf of Mexico shores would be inundated with oil. And while many wetland habitats and wildlife were oiled during the three-month leak, the environmental damage to coastal Louisiana was less than many expected, in part because much of the crude never made it to the coast.

Related Articles


Research by a trio of geoscientists, including the University of Pennsylvania's Douglas Jerolmack, now offers an explanation for why some of the oil stayed out at sea. Using publicly available datasets, their study reveals that the force of the Mississippi River emptying into the Gulf of Mexico created mounds of freshwater which pushed the oil slick off shore.

"The idea is that, if the water surface is tilting a little bit, then maybe the oil will move downhill, sort of like a ball on a plate. If you tilt the plate, the ball will roll one way and then another," Jerolmack said. "Surprisingly no one had really investigated the effect that the tilting of the water surface can have on the migration of oil."

The finding, published in the journal PLoS ONE, could help make better predictions about where oil will make landfall in future oil spills, helping to direct efforts to spare fragile coastlines and wildlife.

Jerolmack, an assistant professor in Penn's Department of Earth and Environmental Science, collaborated on the study with lead author Federico Falcini, a postdoctoral investigator in Jerolmack's lab at the time. Bruno Buongiorno Nardelli of Italy's Consiglio Nazionale delle Richerche also contributed to the work.

As the Deepwater Horizon disaster unfolded two years ago, the National Oceanic and Atmospheric Administration used information from satellite data and helicopter flights over the Gulf to produce aerial images of the shifting coat of oil. NOAA also issued daily forecasts of where the oil slick might travel, using computer models based on ocean currents.

"We noticed that there was a big disconnect between the forecasts of where the oil was going to be the next day and where the oil actually was the next day," Jerolmack said. "That maybe shouldn't be a surprise, because these computer models were not generated to forecast the movement of oil, they were generated to forecast the movement of water."

Clearly some force beyond the ocean's current was acting to direct the oil's movement. So the researchers turned their attention to the ocean's topography.

They accessed interpreted data from the Colorado Center for Astrodynamics Research that provides real-time information about sea-surface levels. These measurements, gathered from radar bounced off the surface of the ocean from the Jason2 satellite, were considered unreliable near shore, where land could confuse the signals.

The researchers performed their own analyses on the Jason2's raw data to separate out this confounding effect and glean sea-surface-level information within a few kilometers of shore. Their results confirmed the existence of several mounds and troughs in the Gulf. One mound in particular drew their attention.

"We recognized that there was a very persistent mound, a bump or a bulge, in the elevation of the sea surface in the vicinity of the Mississippi Delta," Jerolmack said.

The reason was that the oil spill coincided with the typical spring flood on the Mississippi, creating a larger-than-normal flow of water into the Delta. This powerful discharge of fresh water mounded on top of the denser salt water of the Gulf. The resulting bulge, which was approximately 10 centimeters higher than the surrounding ocean and 50-100 kilometers in diameter, was positioned so that oil from the Deepwater Horizon drilling rig ran "downhill" and away from the coast.

A mathematical model representing a two-layer fluid -- composed of oil on top and fresh water underneath -- confirmed that the slope of the mound was sufficient to direct the oil's movement.

"The model was able to predict the speed at which the oil moved away from this fresh-water mound and how long it took for the oil to move away from the mound," Jerolmack said.

Despite this correlation, mound formation was just one of many competing forces driving the drift of the Gulf oil slick, Jerolmack noted.

"A mound can only form if the river discharge is relatively high and the ocean is relatively calm."

Indeed, as the Mississippi flood waters subsided and the river's discharge lessened, the bulge disappeared and the oil slick moved back toward shore. The winds of Hurricane Alex, which formed in late June 2010, also resulted in a decline in mound formation and the oil slick being pushed toward land.

Still, factoring in mound formation will help produce more accurate forecasts of oil spills around the Mississippi Delta -- and perhaps predict other dispersion events as well.

"This feature is likely important not only for the oil spill, but also for the dispersal of nutrients, sediments and pollution into the Gulf," Jerolmack said.

The study was supported by a grant from the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. Frederico Falcini, Douglas J. Jerolmack, Bruno Buongiorno Nardelli. Mississippi River and Sea Surface Height Effects on Oil Slick Migration. PLoS ONE, 2012; 7 (4): e36037 DOI: 10.1371/journal.pone.0036037

Cite This Page:

University of Pennsylvania. "Push from Mississippi kept Deepwater Horizon oil slick off shore." ScienceDaily. ScienceDaily, 10 May 2012. <www.sciencedaily.com/releases/2012/05/120510225001.htm>.
University of Pennsylvania. (2012, May 10). Push from Mississippi kept Deepwater Horizon oil slick off shore. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/05/120510225001.htm
University of Pennsylvania. "Push from Mississippi kept Deepwater Horizon oil slick off shore." ScienceDaily. www.sciencedaily.com/releases/2012/05/120510225001.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins