Featured Research

from universities, journals, and other organizations

First gene therapy successful against aging-associated decline: Mouse lifespan extended up to 24% with a single treatment

Date:
May 14, 2012
Source:
Centro Nacional de Investigaciones Oncologicas (CNIO)
Summary:
A new study consisting of inducing cells to express telomerase, the enzyme which -- metaphorically -- slows down the biological clock -- was successful. The research provides a "proof-of-principle" that this "feasible and safe" approach can effectively "improve health span."

Pictured are Maria A. Blasco and Bruno M. Bernardes de Jesús (co-author) in the CNIO building in Madrid.
Credit: CNIO

A new study consisting of inducing cells to express telomerase, the enzyme which -- metaphorically -- slows down the biological clock -- was successful. The research provides a "proof-of-principle" that this "feasible and safe" approach can effectively "improve health span."

A number of studies have shown that it is possible to lengthen the average life of individuals of many species, including mammals, by acting on specific genes. To date, however, this has meant altering the animals' genes permanently from the embryonic stage -- an approach impracticable in humans. Researchers at the Spanish National Cancer Research Centre (CNIO), led by its director María Blasco, have demonstrated that the mouse lifespan can be extended by the application in adult life of a single treatment acting directly on the animal's genes. And they have done so using gene therapy, a strategy never before employed to combat aging. The therapy has been found to be safe and effective in mice.

The results were recently published in the journal EMBO Molecular Medicine. The CNIO team, in collaboration with Eduard Ayuso and Fátima Bosch of the Centre of Animal Biotechnology and Gene Therapy at the Universitat Autònoma de Barcelona (UAB), treated adult (one-­‐year-­‐old) and aged (two-­‐year-­‐old) mice, with the gene therapy delivering a "rejuvenating" effect in both cases, according to the authors.

Mice treated at the age of one lived longer by 24% on average, and those treated at the age of two, by 13%. The therapy, furthermore, produced an appreciable improvement in the animals' health, delaying the onset of age-­‐related diseases -- like osteoporosis and insulin resistance -- and achieving improved readings on aging indicators like neuromuscular coordination.

The gene therapy consisted of treating the animals with a DNA-­modified virus, the viral genes having been replaced by those of the telomerase enzyme, with a key role in aging. Telomerase repairs the extreme ends or tips of chromosomes, known as telomeres, and in doing so slows the cell's and therefore the body's biological clock. When the animal is infected, the virus acts as a vehicle depositing the telomerase gene in the cells.

This study "shows that it is possible to develop a telomerase-­based anti-­aging gene therapy without increasing the incidence of cancer," the authors affirm. "Aged organisms accumulate damage in their DNA due to telomere shortening, [this study] finds that a gene therapy based on telomerase production can repair or delay this kind of damage," they add.

'Resetting' the biological clock

Telomeres are the caps that protect the end of chromosomes, but they cannot do so indefinitely: each time the cell divides the telomeres get shorter, until they are so short that they lose all functionality. The cell, as a result, stops dividing and ages or dies. Telomerase gets around this by preventing telomeres from shortening or even rebuilding them. What it does, in essence, is stop or reset the cell's biological clock.

But in most cells the telomerase gene is only active before birth; the cells of an adult organism, with few exceptions, have no telomerase. The exceptions in question are adult stem cells and cancer cells, which divide limitlessly and are therefore immortal -- in fact several studies have shown that telomerase expression is the key to the immortality of tumour cells.

It is precisely this risk of promoting tumour development that has set back the investigation of telomerase-­‐based anti-­‐aging therapies.

In 2007, Blasco's group demonstrated that it was feasible to prolong the lives of transgenic mice, whose genome had been permanently altered at the embryonic stage, by causing their cells to express telomerase and, also, extra copies of cancer-­‐resistant genes. These animals live 40% longer than is normal and do not develop cancer.

The mice subjected to the gene therapy now under test are likewise free of cancer. Researchers believe this is because the therapy begins when the animals are adult so do not have time to accumulate sufficient number of aberrant divisions for tumours to appear.

Also important is the kind of virus employed to carry the telomerase gene to the cells. The authors selected demonstrably safe viruses that have been successfully used in gene therapy treatment of hemophilia and eye disease. Specifically, they are non-­‐replicating viruses derived from others that are non-­‐pathogenic in humans.

This study is viewed primarily as "a proof-­‐of-­‐principle that telomerase gene therapy is a feasible and generally safe approach to improve healthspan and treat disorders associated with short telomeres," state Virginia Boccardi (Second University of Naples) and Utz Herbig (New Jersey Medical School-­‐University Hospital Cancer Centre) in a commentary published in the same journal.

Although this therapy may not find application as an anti-­‐aging treatment in humans, in the short term at least, it could open up a new treatment option for ailments linked with the presence in tissue of abnormally short telomeres, as in some cases of human pulmonary fibrosis.

More healthy years

As Blasco says, "aging is not currently regarded as a disease, but researchers tend increasingly to view it as the common origin of conditions like insulin resistance or cardiovascular disease, whose incidence rises with age. In treating cell aging, we could prevent these diseases."

With regard to the therapy under testing, Bosch explains: "Because the vector we use expresses the target gene (telomerase) over a long period, we were able to apply a single treatment. This might be the only practical solution for an anti-­‐aging therapy, since other strategies would require the drug to be administered over the patient's lifetime, multiplying the risk of adverse effects."


Story Source:

The above story is based on materials provided by Centro Nacional de Investigaciones Oncologicas (CNIO). Note: Materials may be edited for content and length.


Journal Reference:

  1. Bruno Bernardes de Jesus, Elsa Vera, Kerstin Schneeberger, Agueda M Tejera, Eduard Ayuso, Fatima Bosch, Maria A. Blasco. Telomerase gene therapy in adult and old mice delays ageing and increases longevity without increasing cancer. EMBO Molecular Medicine, 2012 (in press) DOI: 10.1002/emmm.201200245

Cite This Page:

Centro Nacional de Investigaciones Oncologicas (CNIO). "First gene therapy successful against aging-associated decline: Mouse lifespan extended up to 24% with a single treatment." ScienceDaily. ScienceDaily, 14 May 2012. <www.sciencedaily.com/releases/2012/05/120514204050.htm>.
Centro Nacional de Investigaciones Oncologicas (CNIO). (2012, May 14). First gene therapy successful against aging-associated decline: Mouse lifespan extended up to 24% with a single treatment. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2012/05/120514204050.htm
Centro Nacional de Investigaciones Oncologicas (CNIO). "First gene therapy successful against aging-associated decline: Mouse lifespan extended up to 24% with a single treatment." ScienceDaily. www.sciencedaily.com/releases/2012/05/120514204050.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) — Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) — Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) — According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) — The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins