Featured Research

from universities, journals, and other organizations

Don't like blood tests? New microscope uses rainbow of light to image the flow of individual blood cells

Date:
May 21, 2012
Source:
Optical Society of America
Summary:
Blood tests convey vital medical information, but the sight of a needle often causes anxiety and results take time. A new device however, can reveal much the same information as a traditional blood test in real-time, simply by shining a light through the skin. This portable optical instrument is able to provide high-resolution images of blood coursing through veins without the need for harsh fluorescent dyes.

The team’s device relies on a technique called spectrally encoded confocal microscopy. (a) A single line within a blood vessel is imaged with multiple colors of light that encode lateral positions. (b) A single cell crossing the spectral line produces a two-dimensional image with one axis encoded by wavelength and the other by time.
Credit: Biomedical Optics Express

Blood tests convey vital medical information, but the sight of a needle often causes anxiety and results take time. A new device developed by a team of researchers in Israel, however, can reveal much the same information as traditional blood test in real-time, simply by shining a light through the skin. This optical instrument, no bigger than a breadbox, is able to provide high-resolution images of blood coursing through our veins without the need for harsh and short-lived fluorescent dyes.

Related Articles


"We have invented a new optical microscope that can see individual blood cells as they flow inside our body," says Lior Golan, a graduate student in the biomedical engineering department at the Israel Institute of Technology, or Technion, and one of the authors on a paper describing the device that is published in the Optical Society's (OSA) open-access journal Biomedical Optics Express. By eliminating a long wait-time for blood test results, the new microscope might help spotlight warning signs, like high white blood cell count, before a patient develops severe medical problems. The portability of the device could also enable doctors in rural areas without easy access to medical labs to screen large populations for common blood disorders, Golan notes.

Using the new microscope, the researchers imaged the blood flowing through a vessel in the lower lip of a volunteer. They successfully measured the average diameter of the red and white blood cells and also calculated the percent volume of the different cell types, a key measurement for many medical diagnoses.

The device relies on a technique called spectrally encoded confocal microscopy (SECM), which creates images by splitting a light beam into its constituent colors. The colors are spread out in a line from red to violet. To scan blood cells in motion, a probe is pressed against the skin of a patient and the rainbow-like line of light is directed across a blood vessel near the surface of the skin. As blood cells cross the line they scatter light, which is collected and analyzed. The color of the scattered light carries spatial information, and computer programs interpret the signal over time to create 2-D images of the blood cells.

Currently, other blood-scanning systems with cellular resolution do exist, but they are far less practical, relying on bulky equipment or potentially harmful fluorescent dyes that must be injected into the bloodstream.

"An important feature of the technique is its reliance on reflected light from the flowing cells to form their images, thus avoiding the use of fluorescent dyes that could be toxic," Golan says. "Since the blood cells are in constant motion, their appearance is distinctively different from the static tissue surrounding them." The team's technique also takes advantage of the one-way flow of cells to create a compact probe that can quickly image large numbers of cells while remaining stationary against the skin.

At first, the narrow field of view of the microscope made it difficult for the team to locate suitable capillary vessels to image. To solve this, the researchers added a green LED and camera to the system to provide a wider view in which the blood vessels appeared dark because hemoglobin absorbs green light. "Unfortunately, the green channel does not help in finding the depth of the blood vessel," notes Golan. "Adjusting the imaging depth of the probe for imaging a small capillary is still a challenge we will address in future research."

The researchers are also working on a second generation system with higher penetration depth. The new system might expand the range of possible imaging sites beyond the inside lip, which was selected as a test site since it was rich in blood vessels, has no pigment to block light, and doesn't lose blood flow in trauma patients.

Additional steps include work to miniaturize the system for ease of transport and use. "Currently, the probe is a bench-top laboratory version about the size of a small shoebox," says Golan. "We hope to have a thumb-size prototype within the next year."


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lior Golan, Daniella Yeheskely-Hayon, Limor Minai, Eldad J Dann, Dvir Yelin. Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry. Biomedical Optics Express, 2012; 3 (6): 1455 DOI: 10.1364/BOE.3.001455

Cite This Page:

Optical Society of America. "Don't like blood tests? New microscope uses rainbow of light to image the flow of individual blood cells." ScienceDaily. ScienceDaily, 21 May 2012. <www.sciencedaily.com/releases/2012/05/120521115654.htm>.
Optical Society of America. (2012, May 21). Don't like blood tests? New microscope uses rainbow of light to image the flow of individual blood cells. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/05/120521115654.htm
Optical Society of America. "Don't like blood tests? New microscope uses rainbow of light to image the flow of individual blood cells." ScienceDaily. www.sciencedaily.com/releases/2012/05/120521115654.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins