Featured Research

from universities, journals, and other organizations

Organic carbon from Mars, but not biological

Date:
May 24, 2012
Source:
Carnegie Institution
Summary:
Molecules containing large chains of carbon and hydrogen -- the building blocks of all life on Earth -- have been the targets of missions to Mars from Viking to the present day. While these molecules have previously been found in meteorites from Mars, scientists have disagreed about how this organic carbon was formed and whether or not it came from Mars. A new paper provides strong evidence that this carbon did originate on Mars, although it is not biological.

This is how Mars appeared to the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle system on 25 December 2003, the day that Beagle 2 and Mars Express reached the red planet.
Credit: NASA

Molecules containing large chains of carbon and hydrogen--the building blocks of all life on Earth--have been the targets of missions to Mars from Viking to the present day. While these molecules have previously been found in meteorites from Mars, scientists have disagreed about how this organic carbon was formed and whether or not it came from Mars.

Related Articles


A new paper led by Carnegie's Andrew Steele provides strong evidence that this carbon did originate on Mars, although it is not biological. These findings give researchers insight into the chemical processes taking place on Mars and will help aid future quests for evidence of ancient or modern Martian life. The work is published May 24 in Science Express.

There has been little agreement among scientists about the origin of the large carbon macromolecules detected in Martian meteorites. Theories about their origin include contamination from Earth or other meteorites, the results of chemical reactions on Mars, or that they are the remnants of ancient Martian biological life.

Steele's team examined samples from 11 Martian meteorites whose ages span about 4.2 billion years of Martian history. They detected large carbon compounds in 10 of them. The molecules were found inside of grains of crystallized minerals.

Using an array of sophisticated research techniques, the team was able to show that at least some of the macromolecules of carbon were indigenous to the meteorites themselves and not contamination from Earth. Next the team looked at the carbon molecules in relation to other minerals in the meteorites to see what kinds of chemical processing these samples endured before arriving on Earth. The crystalline grains encasing the carbon compounds provided a window into how the carbon molecules were created. Their findings indicate that the carbon was created during volcanism on Mars and show that Mars has been doing organic chemistry for most of its history.

"These findings show that the storage of reduced carbon molecules on Mars occurred throughout the planet's history and might have been similar to processes that occurred on the ancient Earth," Steele said. "Understanding the genesis of these non-biological, carbon-containing macromolecules on Mars is crucial for developing future missions to detect evidence of life on our neighboring planet."

In a separate paper published by American Mineralogist, available online, Steele and his team studied a meteorite called Allan Hills 84001 that was reported to contain relicts of ancient biological life on Mars. The paper demonstrated that these supposed remnants could have been created by chemical reactions involving the graphite form of carbon, rather than biological processes. Both of these papers reveal a pool of reduced carbon on Mars and will help scientist involved in future Mars missions distinguish these non-biologically formed molecules from potential life.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Steele, F. M. McCubbin, M. Fries, L. Kater, N. Z. Boctor, M. L. Fogel, P. G. Conrad, M. Glamoclija, M. Spencer, A. L. Morrow, M. R. Hammond, R. N. Zare, E. P. Vicenzi, S. Siljestrφm, R. Bowden, C. D. K. Herd, B. O. Mysen, S. B. Shirey, H. E. F. Amundsen, A. H. Treiman, E. S. Bullock, and A. J. T. Jull. A Reduced Organic Carbon Component in Martian Basalts. Science, 24 May 2012 DOI: 10.1126/science.1220715

Cite This Page:

Carnegie Institution. "Organic carbon from Mars, but not biological." ScienceDaily. ScienceDaily, 24 May 2012. <www.sciencedaily.com/releases/2012/05/120524143450.htm>.
Carnegie Institution. (2012, May 24). Organic carbon from Mars, but not biological. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/05/120524143450.htm
Carnegie Institution. "Organic carbon from Mars, but not biological." ScienceDaily. www.sciencedaily.com/releases/2012/05/120524143450.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) — China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins