Featured Research

from universities, journals, and other organizations

Computer model pinpoints prime materials for efficient carbon capture

Date:
May 27, 2012
Source:
University of California - Berkeley
Summary:
The electric power industry expects eventually to implement carbon capture of emissions in order to reduce greenhouse gases, yet today's best technology eats up 30 percent of a plant's power. Scientists have now created a computer model that analyzes the millions of possible porous capture structures, from zeolites to MOFs, to pinpoint ones that can improve energy efficiency, so that chemists can synthesize and test them for future use.

This is an example of the 50 best zeolite structures for capturing carbon dioxide. Zeolite is a porous solid made of silicon dioxide, or quartz. In the model, the red balls are oxygen, the tan balls are silicon. The blue-green area is where carbon dioxide prefers to adsorb.
Credit: Berend Smit laboratory, UC Berkeley

When power plants begin capturing their carbon emissions to reduce greenhouse gases -- and to most in the electric power industry, it's a question of when, not if -- it will be an expensive undertaking.

Current technologies would use about one-third of the energy generated by the plants -- what's called "parasitic energy" -- and, as a result, substantially drive up the price of electricity.

But a new computer model developed by University of California, Berkeley, chemists shows that less expensive technologies are on the horizon. They will use new solid materials like zeolites and metal oxide frameworks (MOFs) that more efficiently capture carbon dioxide so that it can be sequestered underground.

"The current on-the-shelf process of carbon capture has problems, including environmental ones, if you do it on a large scale," said Berend Smit, Chancellor's Professor in the departments of chemical and biomolecular engineering and of chemistry at UC Berkeley and a faculty senior scientist in the Materials Sciences Division at Lawrence Berkeley National Laboratory (LBNL). "Our calculations show that we can reduce the parasitic energy costs of carbon capture by 30 percent with these types of materials, which should encourage the industry and academics to look at them."

Smit and his colleagues at UC Berkeley, LBNL, Rice University and the Electric Power Research Institute (EPRI) in Palo Alto, Calif., who will publish their results online May 27 in advance of publication in the journal Nature Materials, already are integrating their database of materials into power plant design software.

"Our database of carbon capture materials is going to be coupled to a model of a full plant design, so if we have a new material, we can immediately see whether this material makes sense for an actual design," Smit said.

Guiding new materials research

There are potentially millions of materialsthat can capture carbon dioxide, but it's physically and economically impossible for scientists and engineers to synthesize and test them all, Smit said. Now, a researcher can upload the structure of a proposed material to Smit's website, and the new computer model will calculate whether it offers improved performance over the energy consumption figures of today's best technology for removing carbon.

"What is unique about this model is that, for the first time, we are able to guide the direction for materials research and say, 'here are the properties we want, even if we don't know what the ultimate material will look like,'" said Abhoyjit Bhown, a co-author of the study and a technical executive at EPRI, which conducts research and development for the electric power industry and the public. "Before, people were trying to figure out what materials they should shoot for, and that question was unanswered until now."

Fossil fuel-burning power plants, in particular coal-burning units, are a major source of the carbon dioxide that is rapidly warming the planet and altering the climate in ways that could impact crops and water supplies, raise sea level and lead to weather extremes. Even with the move toward alternative, sustainable and low-carbon sources of energy, ranging from solar and wind to hydrothermal, coal- and natural gas-burning power plants are being built at an increasing rate around the world. At some point, Smit said, carbon capture will be the only way to reduce carbon emissions sufficiently to stave off the worst consequences of climate change.

Although no commercial power plants currently capture carbon dioxide on a large scale, a few small-scale and pilot plants do, using today's best technology: funneling emissions through a bath of nitrogen-based amines, which grab carbon dioxide from the flue gases. The amines are then boiled to release the CO2. Additional energy is required to compress the carbon dioxide so that it can be pumped underground.

The energy needed for this process decreases the amount that can go into making electricity. Calculations show that for a coal-fired power plant, that could amount to approximately 30 percent of total energy generated.

Solid materials should be inherently more energy-efficient than amine scrubbing, because the CO2 can be driven off at lower temperatures. But materials differ significantly in how tightly they grab CO2 and how easily they release it. The best process will be a balance between the two, Smit said.

Smit and his UC Berkeley group worked with Bhown and EPRI scientists to establish the best criteria for a good carbon capture material, focusing on the energy costs of capture, release and compression, and then developed a computer model to calculate this energy consumption for any material. Smit then obtained a database of 4 million zeolite structures compiled by Rice University scientists and ran the structures through his model. Zeolites are porous materials made of silicon dioxide, the same composition as quartz.

The team also computed the energy efficiency of 10,000 MOF structures, which are composites of metals like iron with organic compounds that, together, form a porous structure. That structure has been touted as a way to store hydrogen for fuel or to separate gases during petroleum refining.

"The surprise was that we found many materials, some already known but others hypothetical, that could be synthesized" and work more energy efficiently than amines, Smit said. The best materials used 30 percent less energy than the amine process, though future materials may work even better. The computer model will work for structures other than zeolites and MOFs, Smit said.

Bhown said that the theoretically best material will probably have a parasitic energy cost of about 10 percent, so processes that use 20 percent or less are more attractive.

GPUs dramatically speed calculations

Key to the team's success was using graphics processing units (GPUs) instead of standard computer central processing units (CPUs), GPUs reduced each structure's calculation, which involves complex quantum chemistry, from 10 days to 2 seconds.

Bhown noted that most people believe that some economic incentives or regulatory frameworks are needed to implement carbon capture, and the EPRI's goal is to help the industry identify the best technologies for doing so. A survey that EPRI conducted recently suggested that developing any new technology would take 10-15 years even with adequate funding.

"The collaboration between different parts of the Department of Energy illustrates what can be achieved if researchers working on the most fundamental aspects of carbon capture collaborate with their industry counterparts" says Karma Sawyer, DOE program director. "This study shows how engineering and fundamental science can speed-up the process of discovery and implementation of promising materials ready to test in the field."

"The hope is that there is a system set up such that, when someone comes up with a promising material, we can rapidly test it and get it to a readiness level pretty quickly," he said. "We are all excited by this work and look forward to pursuing it further."

Other coauthors of the study are graduate students Li-Chiang Lin and Joseph A. Swisher of UC Berkeley; Adam H. Berger of the EPRI; Richard L. Martin, Chris H. Rycroft and Maciej Haranczyk of LBNL's Computational Research Division; post-doctoral fellows Jihan Kim and Kuldeep Jariwala of LBNL's Materials Science Division; and Michael W. Deem of the Departments of Bioengineering and Physics and Astronomy at Rice University.

This work has been supported by the Department of Energy through National Energy Technology Laboratory, Advanced Research Projects Agency -- Energy (ARPA-E) and Office of Science, and through EPRI's Office of Technology Innovation. Smit is also director of the Department of Energy-funded Energy Frontier Research Center at UC Berkeley.


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Journal Reference:

  1. Li-Chiang Lin, Adam H. Berger, Richard L. Martin, Jihan Kim, Joseph A. Swisher, Kuldeep Jariwala, Chris H. Rycroft, Abhoyjit S. Bhown, Michael W. Deem, Maciej Haranczyk, Berend Smit. In silico screening of carbon-capture materials. Nature Materials, 2012; DOI: 10.1038/nmat3336

Cite This Page:

University of California - Berkeley. "Computer model pinpoints prime materials for efficient carbon capture." ScienceDaily. ScienceDaily, 27 May 2012. <www.sciencedaily.com/releases/2012/05/120527153814.htm>.
University of California - Berkeley. (2012, May 27). Computer model pinpoints prime materials for efficient carbon capture. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/05/120527153814.htm
University of California - Berkeley. "Computer model pinpoints prime materials for efficient carbon capture." ScienceDaily. www.sciencedaily.com/releases/2012/05/120527153814.htm (accessed July 23, 2014).

Share This




More Earth & Climate News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Observation Boat to Protect Cetaceans During Ship Transfer

Observation Boat to Protect Cetaceans During Ship Transfer

AFP (July 22, 2014) As part of the 14-ship convoy that will accompany the Costa Concordia from the port of Giglio to the port of Genoa, there will be a boat carrying experts to look out for dolphins and whales from crossing the path of the Concordia. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


New Materials Could Slash Energy Costs for Carbon Dioxide Capture

May 30, 2012 A detailed analysis of more than four million absorbent minerals has determined that new materials could help electricity producers slash as much as 30 percent of the "parasitic energy" ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins