Featured Research

from universities, journals, and other organizations

New type of biosensor is fast, super-sensitive

Date:
May 31, 2012
Source:
University of New South Wales
Summary:
A whole new class of biosensor that can detect exceptionally small traces of contaminants in liquids in just 40 minutes has now been developed. Known as a biochemiresistor, it meets a long-standing challenge to create a sensor that is not only super-sensitive to the presence of chemical compounds but responds quickly. It has countless potential uses for detecting drugs, toxins and pesticides for biomedical or environmental analysis.

Schematic: Magnets are used to assemble nanoparticles, coated with antibodies to enrofloxacin, between two electrodes: when antibodies leave the nanoparticles the electrical resistance falls.
Credit: Image courtesy of University of New South Wales

A whole new class of biosensor that can detect exceptionally small traces of contaminants in liquids in just 40 minutes has been developed by a UNSW-led team of researchers.

Known as a biochemiresistor, it meets a long-standing challenge to create a sensor that is not only super-sensitive to the presence of chemical compounds but responds quickly. It has countless potential uses for detecting drugs, toxins and pesticides for biomedical or environmental analysis.

In a paper published in the chemistry journal Angewandte Chemie the researchers describe how they successfully tested the new sensor by detecting tiny traces in milk of the veterinary antibiotic enrofloxacin. The journal has singled out the study for attention as a "Very Important Paper." Only 5% of papers published by the journal are so designated.

"Enrofloxacin is an antibiotic used in the agricultural industry that can be transferred to the food chain," notes co-author Scientia Professor Justin Gooding, of the UNSW School of Chemistry and the Australian Centre for Nanomedicine.

"Our biochemiresistor was able to detect enrofloxacin in neat milk in 40 minutes, at level as low as one nanogram in a litre of milk. To put that number in perspective, a nanogram is a billionth of a gram and is the mass of a single cell.

"While that is impressive enough, the sensor is a general concept that can be widely applied across many different fields."

A biosensor is a portable analytical device that uses biological molecules to detect selectively just one compound within a mix of many others. Small biosensors are already in daily use testing the safety of drinking water, for checking diabetic blood-sugar levels and for pregnancy tests

The biochemiresistor uses gold-coated magnetic nanoparticles modified with antibodies that are selective for the chemical constituent -- or analyte -- of interest. The nanoparticles are dispersed into the sample for analysis and if the analyte is present some of the antibodies detach from the nanoparticles.

Using a magnet, the nanoparticles are then assembled into a film between two electrodes and the electrical resistance is measured. The more analyte is present, the more antibodies leave the nanoparticles and the lower the resistance in the nanoparticle film.

"This new type of biosensor is rapid in response because the magnetic nanoparticle biosensors go and get the analyte rather than the usual approach of waiting for the analyte to find the sensing surface," says Gooding.

"The biochemiresistor is also more sensitive than the usual biosensor because, as the nanoparticles are dispersed throughout the sample, the entire sample is analysed, not just a small portion of the solution."

The study's lead author is Leo M.H. Lai. The team included other researchers from the Australian Centre for NanoMedicine and the former ARC Centre of Excellence for Functional Nanomaterials at UNSW.


Story Source:

The above story is based on materials provided by University of New South Wales. The original article was written by Bob Beale. Note: Materials may be edited for content and length.


Journal Reference:

  1. Leo M. H. Lai, Ian Y. Goon, Kyloon Chuah, May Lim, Filip Braet, Rose Amal, J. Justin Gooding. The Biochemiresistor: An Ultrasensitive Biosensor for Small Organic Molecules. Angewandte Chemie International Edition, 2012; DOI: 10.1002/anie.201202350

Cite This Page:

University of New South Wales. "New type of biosensor is fast, super-sensitive." ScienceDaily. ScienceDaily, 31 May 2012. <www.sciencedaily.com/releases/2012/05/120531102209.htm>.
University of New South Wales. (2012, May 31). New type of biosensor is fast, super-sensitive. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/05/120531102209.htm
University of New South Wales. "New type of biosensor is fast, super-sensitive." ScienceDaily. www.sciencedaily.com/releases/2012/05/120531102209.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins