Featured Research

from universities, journals, and other organizations

Splitting the unsplittable: Physicists split an atom using quantum mechanics precision

Date:
June 5, 2012
Source:
Universität Bonn
Summary:
Researchers have just shown how a single atom can be split into its two halves, pulled apart and put back together again. While the word "atom" literally means "indivisible," the laws of quantum mechanics allow dividing atoms -- similarly to light rays -- and reuniting them. The researchers want to build quantum mechanics bridges by letting the atom touch adjacent atoms while it is being pulled apart so that it works like a bridge span between two pillars.

Maximilian Genske, Noomen Belmechri, Andreas Steffen and Dr. Andrea Alberti working.
Credit: Copyright Barbara Frommann/Uni Bonn

Researchers from the University of Bonn have just shown how a single atom can be split into its two halves, pulled apart and put back together again. While the word "atom" literally means "indivisible," the laws of quantum mechanics allow dividing atoms -- similarly to light rays -- and reuniting them. The researchers want to build quantum mechanics bridges by letting the atom touch adjacent atoms while it is being pulled apart so that it works like a bridge span between two pillars.

Related Articles


The results have just been published in the journal Proceedings of the National Academy of Sciences.

Dividing atoms? What sounds like nuclear fission and radioactivity is, however, a precision process using quantum mechanics. The laws of quantum mechanics allow objects to exist in several states simultaneously. This is what the so-called double-slit experiment is based on, where a particle can go through two slits at the same time. The Bonn scientists working with Prof. Dr. Dieter Meschede from the Institute for Applied Physics of the University of Bonn succeeded in keeping a single atom simultaneously in two places that were more than ten micrometers, or one hundredth of a millimeter, apart. This is an enormous distance for an atom. Afterwards, the atom was put back together undamaged.

The atom has a split personality

The fragile quantum effects can only occur at the lowest temperatures and with careful handling. One method is cooling a cesium atom enormously using lasers -- to a temperature of a tenth of a million above absolute zero -- and then holding it with another laser. This laser beam is key to splitting the atom. It works because atoms have a spin that can go in two directions. Depending on the direction, the atom can be moved to the right or the left by the laser like on a conveyor. Key is that the atom's spin can be in both directions simultaneously. So, if the atom is moved to the right and left at the same time, it will split. "The atom has kind of a split personality, half of it is to the right, and half to the left, and yet, it is still whole," explained Andreas Steffen, the publication's lead author.

The parts compare their "experiences"

But you cannot see the split directly; if you shine a light on the atom to take a picture, the split will collapse immediately. The atom can then be seen in several images; sometimes on the left, sometimes on the right -- but never in both places. And yet, the split can be proved successfully by putting the atom back together. Thus an interferometer can be built from individual atoms that can, e.g., be used to measure external impacts precisely. Here, the atoms are split, moved apart and joined again. What will become visible, e.g., are differences between the magnetic fields of the two positions or accelerations since they become imprinted in the quantum mechanical state of the atom. This principle has already been used to very precisely survey forces such as Earth's acceleration.

Quantum systems as tools?

The Bonn scientists, however, are looking for something else: simulating complex quantum systems. Many physicists have been hoping for a long time to be able to simulate so-called topological isolators or plant photosynthesis -- phenomena that are hard to capture with modern super computers -- using small quantum systems. The first steps on the way to such simulators could consist of modeling the movement of electrons in solid bodies, thus gaining insights for innovative electronic devices. Examples for this are Dirac motion of electrons in a single graph-layer or the emergence of artificial molecules from interacting particles. But for this purpose, individual atoms would not only have to be well controlled, but also linked according to quantum mechanical laws since where the crux of the matter lies is exactly in a structure made up from many quantum objects.

A cog in a gearbox

"For us, an atom is a well-controlled and oiled cog," said Dr. Andrea Alberti, the team lead for the Bonn experiment. "You can build a calculator with remarkable performance using these cogs, but in order for it to work, they have to engage." This is where the actual significance of splitting atoms lies: Because the two halves are put back together again, they can make contact with adjacent atoms to their left and right and then share it. This allows a small network of atoms to form that can be used -- like in the memory of a computer -- to simulate and control real systems, which would make their secrets more accessible. The scientists believe that the entire potential of controlling individual atoms this precisely will become apparent over time.


Story Source:

The above story is based on materials provided by Universität Bonn. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, D. Meschede. Digital atom interferometer with single particle control on a discretized space-time geometry. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1204285109

Cite This Page:

Universität Bonn. "Splitting the unsplittable: Physicists split an atom using quantum mechanics precision." ScienceDaily. ScienceDaily, 5 June 2012. <www.sciencedaily.com/releases/2012/06/120605102807.htm>.
Universität Bonn. (2012, June 5). Splitting the unsplittable: Physicists split an atom using quantum mechanics precision. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/06/120605102807.htm
Universität Bonn. "Splitting the unsplittable: Physicists split an atom using quantum mechanics precision." ScienceDaily. www.sciencedaily.com/releases/2012/06/120605102807.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins