Featured Research

from universities, journals, and other organizations

Spin structure reveals key to new forms of digital storage, study shows

Date:
June 7, 2012
Source:
RIKEN
Summary:
A synthetic compound long known to exhibit interesting transition properties may hold the key to new, non-magnetic forms of information storage, say researchers. The latest findings shed light on the complex relationship between a compound's electron spin arrangement and its transport properties, an area researchers have long struggled to understand.

"All-in" and "all-out" spin arrangements in an Os tetrahedron of Cd2Os2O7. Nonmagnetic Cd and O ions are omitted for simplicity.
Credit: Image courtesy of RIKEN

A synthetic compound long known to exhibit interesting transition properties may hold the key to new, non-magnetic forms of information storage, say researchers at the RIKEN SPring-8 Center and their collaborators. The team's latest findings shed light on the complex relationship between a compound's electron spin arrangement and its transport properties, an area researchers have long struggled to understand.

The metal-insulator transition (MIT) is a phenomenon in which certain (electricity-conducting) metals make a sudden transition to become a (non-conducting) insulator when cooled below a given temperature. Unlike pure insulators such as silicon and germanium, and pure conductors such as gold and silver, metals with MITs are by their nature unstable and difficult to characterize. This instability is also their strength: complex materials with MITs such as semiconductors form the building blocks for much of our modern technology.

Elucidating the physical basis for MIT, one of the oldest and least well-understood phenomena in condensed matter physics, would shed light on the electron transport properties of a wide range of potentially useful materials. Among these materials, the compound Cd2Os2O7, first discovered more than 30 years ago, has recently attracted renewed attention. Cd2Os2O7 has the intriguing property that when cooled to 227K (-46 C), it undergoes both a metal-insulator transition and a magnetic transition to a state in which all its electron spins are aligned. This spin alignment, which makes the material magnetic, is useful for a wide array of applications, notably information storage.

Previous efforts to elucidate this magnetic structure, however, have been complicated by another property of Cd2Os2O7: its propensity to absorb neutrons, which interferes with standard neutron scattering techniques used to analyze magnetism. To get around this problem, the researchers employed an alternative technique known as resonant x-ray scattering (RXS) using synchrotron radiation from the RIKEN SPring-8 facility, the world's most powerful synchrotron light source. Their results show that at 227K, Cd2Os2O7 structures itself into a tetrahedral network of osmium atoms with electron spins in each tetrahedron pointing in one of two directions: all inward, or all outward. The structure of this unusual "all-in-all-out" arrangement is such that the spins cancel each other out, so that the material as a whole is not magnetic.

Cd2Os2O7 thus has all the makings of a new kind of information storage medium, one whose binary bits of information ("all-in" and "all-out" spin arrangements) would, unlike present-day computer memory, be largely unaffected by surrounding magnetic fields. The results also provide fundamental insights into how electron spin can influence a material's transport properties, with broad applications in condensed matter physics.


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Yamaura, K. Ohgushi, H. Ohsumi, T. Hasegawa, I. Yamauchi, K. Sugimoto, S. Takeshita, A. Tokuda, M. Takata, M. Udagawa, M. Takigawa, H. Harima, T. Arima, and Z. Hiroi. Tetrahedral Magnetic Order and the Metal-Insulator Transition in the Pyrochlore Lattice of Cd2Os2O7. Physical Review Letters, 2012

Cite This Page:

RIKEN. "Spin structure reveals key to new forms of digital storage, study shows." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607092707.htm>.
RIKEN. (2012, June 7). Spin structure reveals key to new forms of digital storage, study shows. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2012/06/120607092707.htm
RIKEN. "Spin structure reveals key to new forms of digital storage, study shows." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607092707.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins