Featured Research

from universities, journals, and other organizations

Predicting the oceans of the future with a mini-lab

Date:
June 7, 2012
Source:
Stanford University
Summary:
Scientists have created a mini-lab in Australia's Great Barrier Reef. The device can simulate predicted future ocean conditions -- such as rising carbon dioxide levels -- and their effects on ecosystems such as coral.

A researcher conducts ocean acidification experiments off Heron Island, Great Barrier Reef, Australia.
Credit: David I. Kline

Stanford researchers have helped open a new door of possibility in the high-stakes effort to save the world's coral reefs.

Related Articles


Working with an international team, the scientists -- including Stanford Woods Institute for the Environment Senior Fellows Jeff Koseff, Rob Dunbar and Steve Monismith -- found a way to create future ocean conditions in a small lab-in-a-box in Australia's Great Barrier Reef. The water inside the device can mimic the composition of the future ocean as climate change continues to alter Earth.

Inside the mini-lab, set in shallow water 2 to 6 feet deep, elevated levels of water acidity were created to test the reaction of a few local corals. (Other corals in the vicinity were not adversely affected.)

It was the first controlled ocean acidification experiment in shallow coastal waters. The scientists' study, published in Scientific Reports, describes how they simulated predicted future ocean conditions off Heron Island in Australia's Great Barrier Reef, representing a new paradigm for analyzing how reefs respond to ocean acidification. David Kline and Ove Hoegh-Guldberg at the University of Queensland led the project.

Focusing conservation efforts

"Installing systems like this at reefs and other aquatic environments could be instrumental in helping us identify how ecosystems will change and which locations and ecosystem types are more likely to remain robust and resilient," said Lida Teneva, a Stanford doctoral student studying with Dunbar.

"From this, we can determine which habitats to focus our conservation efforts on as strongholds for the future," Teneva said.

Oceans absorb more than a quarter of all atmospheric carbon dioxide, concentrations of which are increasing at a rate twice as fast as at any time in the past 800,000 years or more. This leads to increasingly intense water acidification and widespread coral reef destruction. The potential loss is tremendous: reefs provide aquaculture, protein and storm protection for about 1 billion people worldwide.

Standard in situ studies of ocean acidification have multiple drawbacks, including a lack of control over treatment conditions and a tendency to expose organisms to more extreme and variable pH levels than those predicted in the next century. So, in 2007, the Monterey Bay Aquarium Research Institute developed a system that allows for highly controlled semi-enclosed experiments in the deep sea. For their recent study, Stanford researchers modified the system for use in coral reefs.

The complex device, the Coral Proto -- Free Ocean Carbon Enrichment (CP-FOCE) system, uses a network of sensors to monitor water conditions and maintain experimental pH levels as offsets from environmental pH. It avoids many of the problems associated with standard in situ ocean acidification studies, and -- unlike lab and aquarium experiments -- makes it possible to study amid natural conditions such as seasonal environmental changes and ambient seawater chemistry.

The study was funded by the Australian Research Council, the Queensland Government, the National Science Foundation and the Pacific Blue Foundation.


Story Source:

The above story is based on materials provided by Stanford University. The original article was written by Rob Jordan, communications writer for the Stanford Woods Institute for the Environment. Note: Materials may be edited for content and length.


Journal Reference:

  1. David I. Kline, Lida Teneva, Kenneth Schneider, Thomas Miard, Aaron Chai, Malcolm Marker, Kent Headley, Brad Opdyke, Merinda Nash, Matthew Valetich, Jeremy K. Caves, Bayden D. Russell, Sean D. Connell, Bill J. Kirkwood, Peter Brewer, Edward Peltzer, Jack Silverman, Ken Caldeira, Robert B. Dunbar, Jeffrey R. Koseff, Stephen G. Monismith, B. Greg Mitchell, Sophie Dove, Ove Hoegh-Guldberg. A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports, 2012; 2 DOI: 10.1038/srep00413

Cite This Page:

Stanford University. "Predicting the oceans of the future with a mini-lab." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607092857.htm>.
Stanford University. (2012, June 7). Predicting the oceans of the future with a mini-lab. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/06/120607092857.htm
Stanford University. "Predicting the oceans of the future with a mini-lab." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607092857.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins