Featured Research

from universities, journals, and other organizations

Multi-target approach to treating tumors

Date:
June 7, 2012
Source:
Mount Sinai Medical Center
Summary:
Researchers have developed a cancer model built in the fruit fly Drosophila, then used it to create a whole new approach to the discovery of cancer treatments. The result is an investigational compound AD80 that precisely targets multiple cancer genes. Tested in mouse models, the drug proved far more effective and less toxic than standard cancer drugs, which generally focus on a single target. This is the first time that whole-animal screening has been used in a rational, step-wise approach to polypharmacology.

Researchers from Mount Sinai School of Medicine developed a cancer model built in the fruit fly Drosophila, then used it to create a whole new approach to the discovery of cancer treatments. The result is an investigational compound AD80 that precisely targets multiple cancer genes. Tested in mouse models, the drug proved far more effective and less toxic than standard cancer drugs, which generally focus on a single target. This is the first time that whole-animal screening has been used in a rational, step-wise approach to polypharmacology.

Related Articles


The study appears online in the journal Nature.

Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Polypharmacology focuses on multi-target drugs and has emerged as a new paradigm in drug discovery. The hope is that AD80 -- showing unparalleled effectiveness in fly and mouse models -- will be tested in Phase I clinical trials.

"We've come up with one drug that hits multiple targets through 'rational polypharmacology,' and our approach represents a new concept we believe will have great success in suppressing tumors," said Ross L. Cagan, Ph.D., Professor and Associate Dean at Mount Sinai School of Medicine, and senior author on the study. "Scientists are beginning to recognize that single-target drugs can be problematic. I believe that, within the next five years, we'll see more drugs entering clinical trials that use rational polypharmacology as the basis of drug discovery."

The study represented an unusual collaboration between fly geneticists and medicinal chemists. Typically, scientists use human tumor cell lines to screen for single target anti-cancer drugs. In this project, Dr. Cagan, along with co-authors Tirtha Das, Ph.D, from Mount Sinai and their collaborators Arvin Dar, PhD and Kevan Shokat, Ph.D. from the University of California, San Francisco, used their fly cancer models to screen a large chemical library for novel drug leads that shrunk the tumors. They then combined classical fly genetic tools with chemical modeling to develop second-generation drugs to better hit specific targets.

"Many successful drugs now in the marketplace have, by chance, wound up hitting several tumor targets, which is probably why they work," said Dr. Cagan. "The intention of our research was to hit multiple targets purposefully. By using fruit fly genetics we identified, step-by-step, the targets we needed. To my knowledge, this has never been done before. It's also a cost effective model and my prediction is there is going to be more emphasis on whole animal polypharmacology approaches in cancer drug research in the future."

For the study, investigators started out with Ret, the kinase that drives the growth of medullary thyroid tumors in people whose Ret has a cancer-activating mutation; a subset of lung cancer patients also have activated Ret. Researchers engineered a cancer form of Ret into fruit flies. The flies grew tumors wherever Ret was expressed. The investigators then tested dozens of drugs with the goal of curing the tumor.

One challenge is that Ret has many normal cellular roles and shutting it down everywhere in the body would lead to toxicity, a major problem with cancer drugs. "Our goal did not include the assumption that Ret needed to be shut down," said Dr. Cagan. "We wanted to see what worked on the tumors, and then figure out why it worked."

Researchers determined that their lead drug, AD57, suppressed several cancer signals emanating from Ret. These signals include some of the best-known cancer proteins such as Raf, Src, and Tor. Ret itself was not entirely shut down, which suggested to scientists that a patient would experience fewer side effects. The researchers then set out to improve AD57. They manipulated genes in the presence of the original drug hit, a process that had never been done before. As a result, they found that if they lowered the amount of Raf signaling in the presence of AD57, the drug would work even better.

Raf therefore was found to act as a desirable "target." Reducing Tor made AD57 more toxic, so researchers christened Tor an "anti-target," a new concept in drug discovery. Armed with an ideal target/anti-target profile, the Shokat laboratory then developed a derivative of AD57 called AD80.

"When we fed AD80 to the fruit flies, it was like a super drug," said Cagan. "It was remarkable how much AD80 you could give these flies and they didn't mind. This drug wiped the tumors out in a way AD57 or any other drug did not."

Tested in mice models with the same cancer, AD80 performed 500 times better on human cell lines, and far better in mice with very low toxicity, than a cancer drug that the FDA had recently approved for the same cancer type. That drug, vandetanib, is an orphan drug for patients with late-stage medullary thyroid cancer who are not eligible for surgery. Vandetanib was validated in similar fly models from the Cagan laboratory some years earlier.

"We hope that our research will influence the debate between those who favor pursuing drugs that address single vs. multiple tumor targets," said Cagan, who believes the rational polypharmacology model's success in identifying AD80 will prompt scientists and drug companies to pursue broader approaches to attack tumors.


Story Source:

The above story is based on materials provided by Mount Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arvin C. Dar, Tirtha K. Das, Kevan M. Shokat, Ross L. Cagan. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature, 2012; 486 (7401): 80 DOI: 10.1038/nature11127

Cite This Page:

Mount Sinai Medical Center. "Multi-target approach to treating tumors." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607122209.htm>.
Mount Sinai Medical Center. (2012, June 7). Multi-target approach to treating tumors. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/06/120607122209.htm
Mount Sinai Medical Center. "Multi-target approach to treating tumors." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607122209.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins