Featured Research

from universities, journals, and other organizations

Groundbreaking discovery of the cellular origin of cervical cancer

Date:
June 12, 2012
Source:
Agency for Science, Technology and Research (A*STAR), Singapore
Summary:
Scientists have identified a unique set of cells in the cervix that are the cause of human papillomavirus-related cervical cancers. Significantly, the team also showed that these cells do not regenerate when excised. These findings have immense clinical implications in the diagnosis, prevention and treatment of cervical cancer.

A team of scientists from A*STAR's Institute of Medical Biology (IMB) and Genome Institute of Singapore (GIS) together with clinicians from Boston's Brigham and Women's Hospital (BWH) have identified a unique set of cells in the cervix that are the cause of human papillomaviruses (HPV) related cervical cancers. Significantly, the team also showed that these cells do not regenerate when excised. These findings have immense clinical implications in the diagnosis, prevention and treatment of cervical cancer.

Related Articles


The study was published in the Proceedings of the National Academy of Sciences (PNAS), this week.

Cervical cancer is the 7th most common female cancer in Singapore and about 200 cases are diagnosed every year.[1] Infection with HPV is the most common cause or risk factor for cervical cancer. HPV infection causes pre-invasive cancer, termed CIN (Cervical Intraepithelial Neoplasia), which are pre-cancerous lesions that can progress and potentially become invasive cancer if left untreated.

Dr Christopher P. Crum, Director of Women's and Perinatal Pathology in the Department of pathology at BWH, said, "It has been a decades-old mystery why cervical cancers caused by HPV arise only from a discrete region of the cervix, known as the 'squamocolumnar junction', despite the presence of the virus throughout the genital tract. The discovery of these cells finally resolves this mystery and will have wide-ranging impact from developing more meaningful animal models of early cervical carcinogenesis to clinical implications." The team discovered that this discrete set of cells, located at the squamocolumnar junction of the cervix, uniquely express biomarkers that are seen in all forms of invasive cervical cancers linked to HPV. This means that the signature markers of this population of cells can provide a way of distinguishing potentially dangerous precancerous lesions from those with a benign prognosis.

Dr Wa Xian, Principal Investigator at IMB, said, "Our study also revealed that this exotic population of cells does not reappear after ablation[2] by cone biopsy. This finding helps to explain the low rate of new HPV infections in the cervix after excisional therapy and also raises the distinct possibility that preemptive removal of these cells in young women could reduce their risk of cervical cancer. This could be an alternative to current vaccines which only protect against HPV 16 and 18."

This study further validates previous work[3] by Dr Xian and Dr McKeon in collaboration with BWH and NUS, which showed for the first time that some cancers originate from just a small set of cells that are unique from the other cells that reside around them.

Dr Frank Mckeon, Senior Group Leader at GIS, said, "Our previous work on esophageal cancer opened up the possibility of 'preventive therapy' to stamp out the disease by eliminating this small group of cells. This recent work in the cervix further validates this concept and raises important possibilities for early intervention to prevent malignancies linked to very small populations of these unusual, discrete population of cells."

Prof Birgitte Lane, Executive Director of IMB, said, ""This compelling study lends further weight to the importance of specific target cell populations underlying cancer. It is a powerful example of what can be done by combining skilled pathology with modern molecular genetics to uncover important new information, even in such a well-studied disease as cervical cancer."

Notes:

[1]http://www.singhealth.com.sg/PatientCare/ConditionsAndTreatments/Pages/Cervical-Cancer-Cervix-Cancer.aspx

[2] Cervical ablation is the removal of some of the outer layers of the cervix. Gynecologists perform cervical ablation when there is evidence or suspicion of cervical cancer.

[3] This paper can be found in the 24 June, 2011 advance online issue of Cell entitled "Residual Embryonic Cells as Precursors of a Barrett's-Like Metaplasia."


Story Source:

The above story is based on materials provided by Agency for Science, Technology and Research (A*STAR), Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Herfs, Y. Yamamoto, A. Laury, X. Wang, M. R. Nucci, M. E. McLaughlin-Drubin, K. Munger, S. Feldman, F. D. McKeon, W. Xian, C. P. Crum. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1202684109

Cite This Page:

Agency for Science, Technology and Research (A*STAR), Singapore. "Groundbreaking discovery of the cellular origin of cervical cancer." ScienceDaily. ScienceDaily, 12 June 2012. <www.sciencedaily.com/releases/2012/06/120612101613.htm>.
Agency for Science, Technology and Research (A*STAR), Singapore. (2012, June 12). Groundbreaking discovery of the cellular origin of cervical cancer. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2012/06/120612101613.htm
Agency for Science, Technology and Research (A*STAR), Singapore. "Groundbreaking discovery of the cellular origin of cervical cancer." ScienceDaily. www.sciencedaily.com/releases/2012/06/120612101613.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins