Featured Research

from universities, journals, and other organizations

Breast cancer's many drivers

Date:
June 20, 2012
Source:
Broad Institute of MIT and Harvard
Summary:
Breast cancer is not a single disease, but a collection of diseases with dozens of different mutations that crop up with varying frequency across different breast cancer subtypes. In one of the largest breast cancer sequencing efforts to date, scientists have discovered surprising alterations in genes not previously associated with breast cancer.

A breast cancer cell, shown in a color-enhanced scanning electron micrograph.
Credit: Image courtesy of Anne Weston via Wellcome Images

Breast cancer is not a single disease, but a collection of diseases with dozens of different mutations that crop up with varying frequency across different breast cancer subtypes. Deeper exploration of the genetic changes that drive breast cancer is revealing new complexity in the leading cause of cancer death in women worldwide.

Related Articles


In one of the largest breast cancer sequencing efforts to date, scientists from the Broad Institute, the National Institute of Genomic Medicine in Mexico City, Beth Israel Deaconess Medical Center, and Dana-Farber Cancer Institute have discovered surprising alterations in genes that were not previously associated with breast cancer. They report their results in the June 21 issue of Nature, which is publishing a series of papers characterizing the genomic landscape of breast cancer.

One of the team's new findings, a recurrent fusion of the genes MAGI3 and AKT3 in what is known as a translocation event, was observed in tumors from a rare but aggressive form of breast cancer known as triple-negative breast cancer. This cancer does not respond to conventional hormone therapy because its tumors lack three receptors that fuel most breast cancers: estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (known as HER2). But the biological pathway that is affected by the MAGI3-AKT3 reshuffling is already the target of experimental drugs.

The other new alteration reported by the team occurred in two transcription factor genes. Recurrent mutations were detected in the gene CBFB and deletions of its partner RUNX1. Cancer-causing rearrangements of these two genes are common in blood cancers, such as acute myeloid leukemia, but their discovery in breast cancer marks the first time they have been seen in a solid cancer.

"These genes wouldn't top the list of genes you think would be mutated in breast cancer," said Alfredo Hidalgo Miranda, co-senior author of the paper and head of the cancer genomics laboratory at the National Institute of Genomic Medicine, known by its Spanish acronym INMEGEN. "That's exactly the point of doing this type of analysis. It gives you the opportunity to find those genes that you never thought would be involved in the breast cancer process."

The scientists studied two kinds of samples. They sequenced the whole exomes -- the tiny fraction of the genome that encodes proteins -- of 103 breast cancer tumors and DNA from normal tissue from patients in Mexico and Vietnam. They also sequenced the entire genomes of 22 breast cancer tumors and matched normal tissue.

Their analysis confirmed the presence of previously known mutations, but it also turned up the unsuspected alterations.

"One of the lessons here is the real diversity of mutations in breast cancer. I think it's clear there are going to be roughly 50 or so different mutated genes in breast cancer," said Matthew Meyerson, co-senior author of the paper, Broad senior associate member, and professor of pathology at Dana-Farber Cancer Institute and Harvard Medical School. "There's a big diversity of driver genes in cancer. We don't understand what all of them are, but larger data sets will enable us to identify them."

The mutations in CBFB and RUNX1 point to the importance of understanding cell differentiation -- how cells become specialized -- and transcription factors that regulate that process of cell differentiation in epithelial tissue, which lines the inner and outer surfaces of the body. Further studies are needed to unravel that relationship, the authors concluded.

For the current study, inspecting the novel fusion gene MAGI1-AKT3 more closely showed not only that the translocation can transform normal cells into cancer cells, but also that the protein produced by the gene is insensitive to certain drugs now in clinical trials, yet sensitive to others.

In general, fusion genes are created within the same chromosome or across different chromosomes when parts of one gene join parts of another to become a novel gene that wouldn't normally exist. Like the CBFB and RUNX1 mutations, translocations are also more common in blood cancers but until now have rarely been detected in solid tumors, especially breast cancer.

This particular MAGI1-AKT3 fusion gene produces a fusion protein that acts in the PI 3-kinase pathway as an oncogene, or a gene that drives cancer, revealing a new target for potential therapy. The kinase pathway controls a multitude of cellular functions. When a gene is mutated in this pathway, the result is uncontrolled cell growth, a hallmark of cancer.

Other gene mutations in this pathway are well-known, but MAGI1-AKT3 is a first.

"This is the first translocation event resulting in an oncogenic fusion protein that has been identified in this pathway," said Alex Toker, a professor in the department of pathology at Beth Israel Deaconess and Harvard Medical School. "That's important because this is one of the most frequently mutated pathways in human cancer, especially in women's cancers such as breast, ovarian, and endometrial cancer."

The most frequently mutated pathway is also the most studied and, from a pharmaceutical perspective, among the most "druggable."

In laboratory dishes, tests confirmed that the novel structure of proteins encoded by the fusion gene provided no place for some drugs to bind but offered targets for other drugs.

"There are many additional studies that need to be performed using mouse models of disease that would recapitulate the expression of this protein in the mammary gland, in addition to the mechanism by which this protein promotes the effects associated with malignancy," Toker said. "These are all experiments that are under way."

Once the mechanism at work in triple-negative breast cancer is understood through animal models, the next step would be to test chemical compounds to see how effective they might be at targeting cells that harbor this fusion gene's protein.

Beyond these scientific findings, the study also represents a closer look at the Latino population, thanks to the collaboration between the Broad and INMEGEN forged through the Slim Initiative in Genomic Medicine.

"The Slim Initiative in Genomic Medicine aims to support the discovery of the genetic basis of diseases such as type 2 diabetes mellitus and several types of cancer which have a profound public health impact in Mexico and Latin America," said Roberto Tapia-Conyer, director general of the Carlos Slim Health Institute. "This novel bi-national scientific collaboration is contributing to put the Latin American genome on the map of the second generation worldwide genome studies."

INMEGEN scientists had previously built a large breast cancer study and then scientists at both the Broad and INMEGEN exchanged clinical, biological, and computational information.

"From the Mexican point of view, you can say the Latino population has not been extensively characterized using genomic methods," Hidalgo Miranda said. "This is a significant contribution to the knowledge of the architecture of breast tumors in this particular population."

The study represented a first opportunity to study the genetic basis of breast cancer in Mexico. Larger studies will be required to determine whether differences in the spectrum of mutations exist between different populations, but this was an important first step toward that goal.

Contributors to the work also include, from the Broad and its Harvard-affiliated hospitals: Shantanu Banerji (co-first author), Kristian Cibulskis (co-first author), Kristin K. Brown (co-first author), Scott L. Carter, Abbie M. Frederick, Michael S. Lawrence, Andrey Y. Sivachenko, Carrie Sougnez, Lihua Zou, Maria L. Cortes, Shouyong Peng, Kristin G. Ardlie, Daniel Auclair, Fujiko Duke, Joshua Francis, Joonil Jung, Robert C. Onofrio, Melissa Parkin, Nam H. Pho, Alex. H. Ramos, Steven E. Schumacher, Nicolas Stransky, Kristin M. Thompson, Jose Baselga, Rameen Beroukhim, Kornelia Polyak, Dennis C. Sgroi, Andrea L. Richardson, Eric S. Lander, Stacey B. Gabriel, Levi A. Garraway, Todd R. Golub, and Gad Getz (co-senior author). From Mexico: Claudia Rangel-Escareno (co-first author), Juan C. Fernandez-Lopez, Veronica Bautista-Pina, Antonio Maffuz-Aziz, Valeria Quintanar-Jurado, Rosa Rebollar-Vega, Sergio Rodriguez-Cuevas, Sandra L. Romero-Cordoba, Laura Uribe-Figueroa, Gerardo Jimenez-Sanchez, and Jorge Melendez-Zajgla.

The research was conducted as part of the Slim Initiative in Genomic Medicine, a project funded by the Carlos Slim Health Institute in Mexico. The work was also supported by grants from the National Institutes of Health and the National Cancer Institute.


Story Source:

The above story is based on materials provided by Broad Institute of MIT and Harvard. The original article was written by Elizabeth Cooney. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shantanu Banerji, Kristian Cibulskis, Claudia Rangel-Escareno, Kristin K. Brown, Scott L. Carter, Abbie M. Frederick, Michael S. Lawrence, Andrey Y. Sivachenko, Carrie Sougnez, Lihua Zou, Maria L. Cortes, Juan C. Fernandez-Lopez, Shouyong Peng, Kristin G. Ardlie, Daniel Auclair, Veronica Bautista-Piña, Fujiko Duke, Joshua Francis, Joonil Jung, Antonio Maffuz-Aziz, Robert C. Onofrio, Melissa Parkin, Nam H. Pho, Valeria Quintanar-Jurado, Alex H. Ramos, Rosa Rebollar-Vega, Sergio Rodriguez-Cuevas, Sandra L. Romero-Cordoba, Steven E. Schumacher, Nicolas Stransky, Kristin M. Thompson, Laura Uribe-Figueroa, Jose Baselga, Rameen Beroukhim, Kornelia Polyak, Dennis C. Sgroi, Andrea L. Richardson, Gerardo Jimenez-Sanchez, Eric S. Lander, Stacey B. Gabriel, Levi A. Garraway, Todd R. Golub, Jorge Melendez-Zajgla, Alex Toker, Gad Getz, Alfredo Hidalgo-Miranda, Matthew Meyerson. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 2012; 486 (7403): 405 DOI: 10.1038/nature11154

Cite This Page:

Broad Institute of MIT and Harvard. "Breast cancer's many drivers." ScienceDaily. ScienceDaily, 20 June 2012. <www.sciencedaily.com/releases/2012/06/120620133145.htm>.
Broad Institute of MIT and Harvard. (2012, June 20). Breast cancer's many drivers. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2012/06/120620133145.htm
Broad Institute of MIT and Harvard. "Breast cancer's many drivers." ScienceDaily. www.sciencedaily.com/releases/2012/06/120620133145.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins