Featured Research

from universities, journals, and other organizations

Could Mars have sustained life? Extensive water in Mars' interior

Date:
June 21, 2012
Source:
Carnegie Institution
Summary:
Until now, Earth was the only planet known to have vast reservoirs of water in its interior. Scientists analyzed the water content of two Martian meteorites and found that the amount of water in places of the Martian mantle is vastly larger than previous estimates and is similar to that of Earth's. The results affect our understanding about Martian geologic history, how water got to the Martian surface, and whether Mars could have sustained life.

Until now, Earth was the only planet known to have vast reservoirs of water in its interior. Scientists analyzed the water content of two Martian meteorites originating from inside the Red Planet. They found that the amount of water in places of the Martian mantle is vastly larger than previous estimates and is similar to that of Earth's. The results not only affect what we know about the geologic history of Mars, but also have implications for how water got to the Martian surface. The data raise the possibility that Mars could have sustained life.
Credit: NASA

Until now, Earth was the only planet known to have vast reservoirs of water in its interior. Scientists analyzed the water content of two Martian meteorites originating from inside the Red Planet. They found that the amount of water in places of the Martian mantle is vastly larger than previous estimates and is similar to that of Earth's. The results not only affect what we know about the geologic history of Mars, but also have implications for how water got to the Martian surface. The data raise the possibility that Mars could have sustained life.

The research was led by former Carnegie postdoctoral scientist Francis McCubbin, now at the University of New Mexico. The analysis was performed by Carnegie Institution investigator Erik Hauri and team and is published in the journal Geology.

The scientists analyzed what are called shergottite meteorites. These are fairly young meteorites that originated by partial melting of the Martian mantle -- the layer under the crust -- and crystallized in the shallow subsurface and on the surface. They came to Earth when ejected from Mars approximately 2.5 million years ago. Meteorite geochemistry tells scientists a lot about the geological processes the planet underwent.

"We analyzed two meteorites that had very different processing histories," explained Hauri. "One had undergone considerable mixing with other elements during its formation, while the other had not. We analyzed the water content of the mineral apatite and found there was little difference between the two even though the chemistry of trace elements was markedly different. The results suggest that water was incorporated during the formation of Mars and that the planet was able to store water in its interior during the planet's differentiation."

Based on the mineral's water content, the scientists estimated that the Martian mantle source from which the rocks were derived contained between 70 and 300 parts per million (ppm) water. For comparison, the upper mantle on Earth contains approximately 50-300 ppm water. Hauri and team were able to determine these values with new techniques and new standards they developed that can quantify water in apatite using a technology called secondary ion mass spectrometry (SIMS).

"There has been substantial evidence for the presence of liquid water at the Martian surface for some time," Hauri said. "So it's been puzzling why previous estimates for the planet's interior have been so dry. This new research makes sense and suggests that volcanoes may have been the primary vehicle for getting water to the surface."

McCubbin concluded, "Not only does this study explain how Mars got its water, it provides a mechanism for hydrogen storage in all the terrestrial planets at the time of their formation." This work was supported by NASA Cosmochemistry grants NNX11AG76G, NNX10AI77G, the New Mexico Space Grant Consortium, and the Carnegie Institution.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. M. McCubbin, E. H. Hauri, S. M. Elardo, K. E. Vander Kaaden, J. Wang, C. K. Shearer. Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology, 2012; DOI: 10.1130/G33242.1

Cite This Page:

Carnegie Institution. "Could Mars have sustained life? Extensive water in Mars' interior." ScienceDaily. ScienceDaily, 21 June 2012. <www.sciencedaily.com/releases/2012/06/120621141403.htm>.
Carnegie Institution. (2012, June 21). Could Mars have sustained life? Extensive water in Mars' interior. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/06/120621141403.htm
Carnegie Institution. "Could Mars have sustained life? Extensive water in Mars' interior." ScienceDaily. www.sciencedaily.com/releases/2012/06/120621141403.htm (accessed September 1, 2014).

Share This




More Space & Time News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins