Featured Research

from universities, journals, and other organizations

The biology of tumor-derived microvesicles

Date:
June 21, 2012
Source:
University of Notre Dame
Summary:
A new article discusses the biology of tumor-derived microvesicles and their clinical application as circulating biomarkers. Microvesicles are membrane-bound sacs released by tumor cells and can be detected in the body fluids of cancer patients.

A new paper by Crislyn D'Souza-Schorey, professor of biological sciences at the University of Notre Dame, discusses the biology of tumor-derived microvesicles and their clinical application as circulating biomarkers. Microvesicles are membrane-bound sacs released by tumor cells and can be detected in the body fluids of cancer patients.

The World Health Organization estimates that cancer will cause approximately 9 million deaths in 2015. The rising prevalence of the disease is a major factor that drives the growth of the oncology biomarkers market. Biomarkers can be defined as any biological, chemical or physical parameter that can be utilized as an indicator of physiological or disease status. Thus, biomarkers are useful in cancer screening and detection and drug design and also in boosting the effectiveness of cancer care by allowing physicians to tailor therapies for individual patients -- an approach known as personalized medicine.

The new paper discusses the potential of microvesicles to present a combination of disease- and tissue-specific markers that would constitute a unique and identifiable biosignature for individual cancers.

"As such, it would make their sampling over time a preferred method to monitor changes to the tumor in response to treatment, especially for tissues such as the ovary or pancreas, where repeated biopsies of these organs is impractical," D'Souza-Schorey said.

Profiling of microvesicles could form the basis of personalized, targeted cancer therapies, especially as more reliable and rapid profiling technologies become available.

"For example, certain markers like HER2/neu, in addition to being elevated in breast cancer, is also increased in a relatively smaller subset of other cancers such as ovarian cancer," D'Souza-Schorey said. "This latter group of patients would benefit from existing treatment strategies that target the HER2 receptor."

The approach could be advantageous over currently used approaches of profiling whole tissue or un-fractionated body fluid particularly if circulating microvesicles indeed concentrate molecular changes that occur in the tumor, as it would increase the sensitivity of detecting critical markers of cancer progression.

"One complicating factor, though, is the presence of shed vesicles from other non-tumor cell types also in direct contact with these body fluids," D'Souza-Schorey said. "Thus, equally significant is the development of strategies to selectively capture tumor-specific markers that separate from other shed vesicle populations."

In collaboration with local oncologists, the D'Souza-Schorey laboratory is investigating the potential of microvesicles as a cancer diagnostic platform, a project under the umbrella of Notre Dame's Advanced Diagnostics and Therapeutics Initiative. The lab's research on the biology of microvesicles and their roles in tumor progression is supported by the National Cancer Institute and the Indiana Clinical and Translational Sciences Institute.

"Despite considerable strides, effort and investment in cancer biomarker research in the past decade, there are still more desirable outcomes, most especially enhanced sensitivity to enable early detection," D'Souza-Schorey said. "An effective biomarker platform that will overcome these challenges would be paradigm-shifting in cancer care."

The paper, which appears in the June 15 issue of the journal Genes and Development, was coauthored by Notre Dame graduate student James Clancy.


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. D'Souza-Schorey, J. W. Clancy. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes & Development, 2012; 26 (12): 1287 DOI: 10.1101/gad.192351.112

Cite This Page:

University of Notre Dame. "The biology of tumor-derived microvesicles." ScienceDaily. ScienceDaily, 21 June 2012. <www.sciencedaily.com/releases/2012/06/120621195917.htm>.
University of Notre Dame. (2012, June 21). The biology of tumor-derived microvesicles. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/06/120621195917.htm
University of Notre Dame. "The biology of tumor-derived microvesicles." ScienceDaily. www.sciencedaily.com/releases/2012/06/120621195917.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins