Science News

... from universities, journals, and other research organizations

Geoflow: Space Station Experiments Shed Light On Conditions Deep Inside Earth

June 25, 2012 — ESA astronaut André Kuipers is running experiments on the International Space Station that are shedding light on conditions deep inside Earth. Orbiting some 400 km above us, Geoflow is offering insights into the inner workings of our planet.


Share This:

Descending 3000 km under our feet, Earth's mantle is a semi-solid fluid under our thin outer crust. The highly viscous layers vary with temperature, pressure and depth.

Understanding how the mantle flows is a major interest for geophysics because it could help to explain earthquakes or volcanic eruptions. Computers can model it, but how can scientists be sure they are correct?

The deepest that humans have ever drilled is just over 12 km, so investigating the mantle directly is out of reach for the immediate future.

Instead of probing Earth's depths directly, six European teams led by the University of Cottbus in Germany looked to recreate aspects of mantle flow in a laboratory. Experiments simulating these conditions can verify and improve the computer models.

This poses a different problem, however. How can gravity be simulated without Earth's gravity itself influencing the results?

The solution is to send an experiment to our largest weightless laboratory: the International Space Station.

Planet in a box

ESA sponsored the development of an experiment that mimics the geometry of a planet. Called Geoflow, it contains two revolving concentric spheres with a liquid between them.

The inner sphere represents Earth's core, with the outer sphere acting as the crust. The liquid, of course, is the mantle.

Free from the influence of Earth's gravity, a high-voltage electrical field creates artificial gravity for the experiment.

As the spheres rotate slowly and a temperature difference is created between the shells, movement in the liquid is closely monitored. The temperatures can be controlled down to a tenth of a degree.

André has seen plumes of hotter liquid rising towards the outer shell -- as predicted by computer simulations.

Mushroom-like plumes in fluids exposed to strong temperature differences might explain the Hawaiian line of volcanoes in the South Pacific.

A better understanding of our planet is not the only outcome of Geoflow. The results could also benefit industry by improving spherical gyroscopes, bearings and centrifugal pumps, for example.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by European Space Agency.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Discovering A New Earth 430 Light Years Away

Astrophysicists analyzing infrared images captured by the Spitzer Space Telescope found indications of a dust cloud surrounding a relatively young. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?