Featured Research

from universities, journals, and other organizations

Cartilage regeneration for bone and joint repair is closer for patients, researchers say

Date:
June 26, 2012
Source:
University of Arizona College of Engineering
Summary:
Biomedical engineering researchers say better implantable sensors and cartilage-growing techniques are making engineered cartilage a clinical reality for patients suffering from joint damage.

Cartilage scaffold design: Cartilage scaffold designs like this have an interior pattern that encourages fast anchoring of the scaffold and allows cartilage to form on the top surface.
Credit: University of Arizona Biomedical Engineering Department/UA Orthopaedic Research Lab, Department of Orthopaedic Surgery

A group of biomedical engineering researchers have cited recent advances in implantable sensor technology and cartilage scaffolding systems as major developments in the use of engineered cartilage for bone and joint repair.

Related Articles


These advances could mean help for the vast number of patients suffering from damaged joints and osteoarthritis -- the most common form of arthritis that affects millions of people worldwide.

Newer, smaller sensing devices that more accurately measure stress loads on joints are giving researchers testing newly grown engineered cartilage within a joint a better understanding of the healing process. Armed with these data, doctors could advise patients on safer, more beneficial levels of activity following joint surgery.

The sensors also transmit their measurements wirelessly, enabling patients undergoing cartilage growth therapy to monitor their own joint stress loads in real time. The advances appear this month in the Journal of the American Academy of Orthopaedic Surgeons.

The article appears in the June 2012 issue of the journal, which publishes research focused on improving the care of patients with musculoskeletal disorders. The article is a review that describes advances in the monitoring of implantable sensors for orthopaedic applications.

Accurately measuring the loads within a repaired joint helps determine smarter ways to get joints to heal, said article co-author John Szivek, professor in the department of orthopaedic surgery at the University of Arizona and director of the UA Orthopedic Research Laboratory in Tucson, Ariz. Szivek also chairs the UA Biomedical Engineering Graduate Interdisciplinary Program.

Szivek said he's been published with a very elite group of researchers in this particular area of biomedical engineering. "There are only a handful of research groups in the world doing this type of work, and my lab is the only one in the world collecting direct measurements from native tissues," he said.

The group is a collaboration of researchers from four universities. Co-authors Ledet and Wachs are from the department of biomedical engineering at Rensselaer Polytechnic Institute in Troy, N.Y. D'Lima is from the department of molecular and experimental medicine at the Scripps Research Institute in La Jolla, Calif., and Westerhoff and Bergmann are from the Julius Wolff Institut, Charitι University of Medicine, Berlin, Germany.

"It's a stroke of genius to combine tissue engineering and improved implant measurement technology," said Jennifer Barton, head of the UA biomedical engineering department. "No one really knew what the specific loads were on these joints before this," she said.

Monitoring and recording the pressures involved in different patient activities decreases rehabilitation time and allows patients to heal more consistently without damaging themselves during rehab or after they have healed. Szivek said the ultimate goal is to house the transmitters on a single small computer chip about one third the size of a dime. These new chip-based transmitters would wirelessly transmit patient activity, including reporting the recent history of various loads on a repaired joint. Patients could also monitor their own healing via the sensor's wireless reporting to a smartphone app.

"The idea of having a device that's designed specifically for a patient, tied to a system that provides dynamic feedback directly to that patient, has tremendous possibilities," Barton said.

Another advance in the ability of researchers to successfully use cartilage growth for joint repair is the use of computerized tomography, or CT, scans, which are computer-generated medical images used in the diagnosis of tumors and cancer. The 3-D images produced by CT scans are now being used to create patient-specific implantable scaffold systems that support joint cartilage while the tissue grows and gains strength.

Using a 3-D scan of a patient's joint to custom build an implantable scaffold to support new cartilage growth -- as well as an implanted sensor that provides real-time activity monitoring for the rehabilitated patient -- represent major milestones in cartilage tissue engineering.

"This group has developed a methodology for building an implant that's closer to the native tissue than anything that has been made before," Barton said.

The Journal of the American Academy of Orthopaedic Surgeons article, "Implantable Sensor Technology: From Research to Clinical Practice," can be found here http://jaaos.org/content/20/6/383.full.pdf+html


Story Source:

The above story is based on materials provided by University of Arizona College of Engineering. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. H. Ledet, D. D'Lima, P. Westerhoff, J. A. Szivek, R. A. Wachs, G. Bergmann. Implantable Sensor Technology: From Research to Clinical Practice. Journal of the American Academy of Orthopaedic Surgeons, 2012; 20 (6): 383 DOI: 10.5435/JAAOS-20-06-383

Cite This Page:

University of Arizona College of Engineering. "Cartilage regeneration for bone and joint repair is closer for patients, researchers say." ScienceDaily. ScienceDaily, 26 June 2012. <www.sciencedaily.com/releases/2012/06/120626064806.htm>.
University of Arizona College of Engineering. (2012, June 26). Cartilage regeneration for bone and joint repair is closer for patients, researchers say. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/06/120626064806.htm
University of Arizona College of Engineering. "Cartilage regeneration for bone and joint repair is closer for patients, researchers say." ScienceDaily. www.sciencedaily.com/releases/2012/06/120626064806.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins