Featured Research

from universities, journals, and other organizations

Rewriting quantum chips with a beam of light: Laser technique brings ultrafast computing closer to reality

Date:
June 26, 2012
Source:
City College of New York
Summary:
The promise of ultrafast quantum computing has moved a step closer to reality with a technique to create rewritable computer chips using a beam of light. Researchers used light to control the spin of an atom's nucleus in order to encode information.

The probe head used to send radio-frequency pulses onto the coil used for pulsed spin manipulation of a gallium arsenide (semiconductor) sample.
Credit: Yunpu Li

The promise of ultrafast quantum computing has moved a step closer to reality with a technique to create rewritable computer chips using a beam of light. Researchers from The City College of New York (CCNY) and the University of California Berkeley (UCB) used light to control the spin of an atom's nucleus in order to encode information.

The technique could pave the way for quantum computing, a long-sought leap forward toward computers with processing speeds many times faster than today's. The group will publish their results on June 26 in Nature Communications.

Current electronic devices are approaching the upper limits in processing speed, and they rely on etching a pattern into a semiconductor to create a chip or integrated circuit. These patterns of interconnections serve as highways to shuttle information around the circuit, but there is a drawback.

"Once the chip is printed, it can only be used one way," explained Dr. Jeffrey Reimer, UCB professor of chemical and biomolecular engineering and the study co-author.

The team -- including CCNY Professor of Physics Carlos Meriles and PhD graduate students Jonathan King of UCB and Yunpu Li of CCNY- saw a remedy for these problems in the emerging sciences of spintronics and quantum computing.

They have developed a technique to use laser light to pattern the alignment of "spin" within atoms so that the pattern can be rewritten on the fly. Such a technique may one day lead to rewritable spintronic circuits.

Digital electronics and conventional computing rely on translating electrical charges into the zeros and ones of binary code. A "spintronics" computer, on the other hand, would use the quantum property of electron spin, which enables the electron to store any number between zero and one.

Imagine this as if the electron were a "yin-yang" symbol in which the proportions of the dark and light areas -- representing values from zero to one -- could vary at will. This would mean that multiple computations could be done simultaneously, which would amp up processing power.

Attempts at using electrons for quantum computing have been plagued, however, by the fact that electron spins switch back and forth rapidly. Thus, they make very unstable vehicles to hold information. To suppress the random switching back and forth of electrons, the UCB and CCNY researchers used laser light to produce long-lasting nuclear spin "magnets" that can pull, push, or stabilize the spins of the electrons.

They did this by illuminating a sample of gallium arsenide -- the same semiconductor used in cell phone chips -- with a pattern of light, much as lithography etches a physical pattern onto a traditional integrated circuit. The illuminated pattern aligned the spins of all the atomic nuclei, and, thus, their electrons, at once, creating a spintronic circuit.

"What you could have is a chip you can erase and rewrite on the fly with just the use of a light beam," said Professor Meriles. Changing the pattern of light altered the layout of the circuit instantly.

"If you can actually rewrite with a beam of light and alter this pattern, you can make the circuit morph to adapt to different requirements," he added. "Imagine what you can make a system like that do for you!"

This work was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by City College of New York. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan P. King, Yunpu Li, Carlos A. Meriles, Jeffrey A. Reimer. Optically rewritable patterns of nuclear magnetization in gallium arsenide. Nature Communications, 2012; 3: 918 DOI: 10.1038/ncomms1918

Cite This Page:

City College of New York. "Rewriting quantum chips with a beam of light: Laser technique brings ultrafast computing closer to reality." ScienceDaily. ScienceDaily, 26 June 2012. <www.sciencedaily.com/releases/2012/06/120626114320.htm>.
City College of New York. (2012, June 26). Rewriting quantum chips with a beam of light: Laser technique brings ultrafast computing closer to reality. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/06/120626114320.htm
City College of New York. "Rewriting quantum chips with a beam of light: Laser technique brings ultrafast computing closer to reality." ScienceDaily. www.sciencedaily.com/releases/2012/06/120626114320.htm (accessed September 17, 2014).

Share This



More Computers & Math News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

FBI Finishes $1 Billion Facial Recognition System

FBI Finishes $1 Billion Facial Recognition System

Newsy (Sep. 15, 2014) The FBI announced it plans to make its Next Generation Identification System available to law enforcement, but some privacy advocates are worried. Video provided by Newsy
Powered by NewsLook.com
A+ for Apple iPhone Pre-Sales

A+ for Apple iPhone Pre-Sales

Reuters - Business Video Online (Sep. 15, 2014) Apple says it received a record 4 million first-day pre-orders for its new iPhone 6 and iPhone 6 Plus, pushing delivery dates into October. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft to Buy 'Minecraft' Maker for $2.5B

Microsoft to Buy 'Minecraft' Maker for $2.5B

AP (Sep. 15, 2014) Microsoft will acquire the maker of the long-running hit game Minecraft for $2.5 billion as the company continues to invest in its Xbox gaming platform and looks to grab attention on mobile phones. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins