Featured Research

from universities, journals, and other organizations

Marine energy doubled by predicting wave power

Date:
June 26, 2012
Source:
University of Exeter
Summary:
The energy generated from our oceans could be doubled using new methods for predicting wave power. New research could pave the way for significant advancements in marine renewable energy, making it a more viable source of power. The researchers devised a means of accurately predicting the power of the next wave in order to make the technology far more efficient, extracting twice as much energy as is currently possible.

New tools for predicting wave power could double the energy from marine renewables.
Credit: © pwollinga / Fotolia

The energy generated from our oceans could be doubled using new methods for predicting wave power. Research led by the University of Exeter, published (27 June) in the journal Renewable Energy, could pave the way for significant advancements in marine renewable energy, making it a more viable source of power.

The study was carried out by a team of mathematicians and engineers from the University of Exeter and Tel Aviv University. They devised a means of accurately predicting the power of the next wave in order to make the technology far more efficient, extracting twice as much energy as is currently possible.

Marine energy is believed to have the potential to provide the UK with electricity twice over. However, technologies to extract and convert energy from the sea are relatively immature, compared with solar or wind, and are not yet commercially competitive without subsidy. Very substantial progress has been made by the leading device developers, but key challenges remain: preventing devices being damaged by the hostile marine environment; and improving the efficiency of energy capture from the waves. This research addresses both problems by enabling control over the devices that extract wave energy. The key to this is to enable devices to accurately predict the power of the next wave and respond by extracting the maximum energy.

The research focused on point absorbers, commonly-used floating devices with parts that move in response to waves, generating energy which they feed back to the grid. Point absorbers are already known to be much more efficient in the amount of energy they produce if their response closely matches the force of the waves and previous research has looked at trying to increase this efficiency. However, this is the first study that has focused on increasing the device's efficiency by predicting and controlling internal forces of the device caused by forthcoming waves.

The team devised a system, which enables the device to extract the maximum amount of energy by predicting the incoming wave. This information enables a program to actively control the response required for a wave of a particular size. Because the device responds appropriately to the force of the next wave, it is far less likely to be damaged and would not need to be turned off in stormy conditions, as is currently the case.

Lead author Dr Guang Li of the University of Exeter said: "Our research has the potential to make huge advances to the progress of marine renewable energy. There are significant benefits to wave energy but progressing this technology has proved challenging. This is a major step forward and could help pave the way for wave energy to play a significant role in providing our power."

Co-author Dr Markus Mueller of the Environment and Sustainability Institute at the University of Exeter's Cornwall Campus said: "The next step is for us to see how effective this approach could be at a large scale, by testing it in farms of Wave Energy Converters."


Story Source:

The above story is based on materials provided by University of Exeter. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guang Li, George Weiss, Markus Mueller, Stuart Townley, Mike R. Belmont. Wave energy converter control by wave prediction and dynamic programming. Renewable Energy, Volume 48, December 2012, Pages 392-403 DOI: 10.1016/j.renene.2012.05.003

Cite This Page:

University of Exeter. "Marine energy doubled by predicting wave power." ScienceDaily. ScienceDaily, 26 June 2012. <www.sciencedaily.com/releases/2012/06/120626172730.htm>.
University of Exeter. (2012, June 26). Marine energy doubled by predicting wave power. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2012/06/120626172730.htm
University of Exeter. "Marine energy doubled by predicting wave power." ScienceDaily. www.sciencedaily.com/releases/2012/06/120626172730.htm (accessed April 25, 2014).

Share This



More Earth & Climate News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) — A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
New Pictures of Ship That Sank in 1888

New Pictures of Ship That Sank in 1888

AP (Apr. 24, 2014) — Federal researchers have released new images of the City of Chester, a steamship that sank in San Francisco Bay in 1888. Researchers recently found the shipwreck while mapping shipping routes. (April 24) Video provided by AP
Powered by NewsLook.com
Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) — A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins