Featured Research

from universities, journals, and other organizations

New technique controls crystalline structure of titanium dioxide

Date:
June 27, 2012
Source:
North Carolina State University
Summary:
Researchers have developed a new technique for controlling the crystalline structure of titanium dioxide at room temperature. The development should make titanium dioxide more efficient in a range of applications, including photovoltaic cells, hydrogen production, antimicrobial coatings, smart sensors and optical communication technologies.

The new technique allows researchers to control the phase of the titanium dioxide by modifying the structure of the titanium trioxide and sapphire substrate.

Researchers from North Carolina State University have developed a new technique for controlling the crystalline structure of titanium dioxide at room temperature. The development should make titanium dioxide more efficient in a range of applications, including photovoltaic cells, hydrogen production, antimicrobial coatings, smart sensors and optical communication technologies.

Titanium dioxide most commonly comes in one on of two major "phases," meaning that its atoms arrange themselves in one of two crystalline structures. These phases are "anatase" or "rutile." The arrangement of atoms dictates the material's optical, chemical and electronic properties. As a result, each phase has different characteristics. The anatase phase has characteristics that make it better suited for use as an antibacterial agent and for applications such as hydrogen production. The rutile phase is better suited for use in other applications, such as photovoltaic cells, smart sensors and optical communication technologies.

"Traditionally, it has been a challenge to stabilize titanium dioxide in the desired phase," says Dr. Jay Narayan, John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and co-author of a paper describing the work. "The material tends to transform into the anatase phase below 500 degrees Celsius [C], and transform into the rutile phase at temperatures above 500 C.

"We have now developed a technique that precisely controls the phase, or crystalline structure, of titanium dioxide at room temperature -- and stabilizes that phase, so it won't change when the temperature fluctuates. This process, called phase tuning, allows us to fine-tune the structure of the titanium dioxide, so that it has the optimal structure for a desired application."

The process begins by using a widely available sapphire substrate that has the desired crystalline structure. Researchers then grow a template layer of titanium trioxide on the substrate. The structure of the titanium trioxide mimics the structure of the sapphire substrate. The titanium dioxide is then grown on top of the titanium trioxide template layer.

The structure of the titanium dioxide differs from the titanium trioxide -- but is dictated by the structure of that template layer. This means that you can create the titanium dioxide in any phase, simply by modifying the structure of the titanium trioxide and sapphire substrate.

This works because of a process called domain matching epitaxy (DME). In DME, the lattice planes in the template layer line up with the lattice planes of the material being grown on that template. Lattice planes are the lines, or walls, which constitute a crystal.

The researchers have also demonstrated how this technique can be used with silicon computer chip substrates, which can be integrated into electronics such as smart sensors.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. R. Bayati, R. Molaei, R. J. Narayan, J. Narayan, H. Zhou, S. J. Pennycook. Domain epitaxy in TiO2/α-Al2O3 thin film heterostructures with Ti2O3 transient layer. Applied Physics Letters, 2012; 100 (25): 251606 DOI: 10.1063/1.4729937

Cite This Page:

North Carolina State University. "New technique controls crystalline structure of titanium dioxide." ScienceDaily. ScienceDaily, 27 June 2012. <www.sciencedaily.com/releases/2012/06/120627103310.htm>.
North Carolina State University. (2012, June 27). New technique controls crystalline structure of titanium dioxide. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/06/120627103310.htm
North Carolina State University. "New technique controls crystalline structure of titanium dioxide." ScienceDaily. www.sciencedaily.com/releases/2012/06/120627103310.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins