Featured Research

from universities, journals, and other organizations

Smaller volcanoes could cool climate

Date:
July 5, 2012
Source:
University of Saskatchewan
Summary:
Scientists have discovered that aerosols from relatively small volcanic eruptions can be boosted into the high atmosphere by weather systems such as monsoons, where they can affect global temperatures. The massive eruption of Mount Pinatubo in the Philippines in 1991 temporarily dropped temperatures by half a degree Celsius world-wide.

Lava Flows at Nabro Volcano, Eritrea (June 29, 2011).
Credit: NASA Earth Observatory image by Robert Simmon, using EO-1 ALI data

A U of S-led international research team has discovered that aerosols from relatively small volcanic eruptions can be boosted into the high atmosphere by weather systems such as monsoons, where they can affect global temperatures. The research appears in the July 6 issue of the journal Science.

Related Articles


Adam Bourassa, from the U of S Institute of Space and Atmospheric Studies, led the research. He explains that until now it was thought that a massively energetic eruption was needed to inject aerosols past the troposphere, the turbulent atmospheric layer closest to Earth, into the stable layers of the stratosphere higher up.

"If an aerosol is in the lower atmosphere, it's affected by the weather and it precipitates back down right away," Bourassa says. "Once it reaches the stratosphere, it can persist for years, and with that kind of a sustained lifetime, it can really have a lasting effect." That effect is the scattering of incoming sunlight and the potential to cool Earth's surface.

For example, the massive eruption of Mount Pinatubo in the Philippines in 1991 temporarily dropped temperatures by half a degree Celsius world-wide.

The research team includes scientists from the U of S, Rutgers University in New Jersey, the National Centre for Atmospheric Research in Colorado, and the University of Wyoming. They looked at the June 2011 eruption of the Nabro volcano in Eritrea in northeast Africa. Wind carried the volcanic gas and aerosol -- minute droplets of sulfuric acid -- into the path of the annual Asian summer monsoon.

The stratosphere's calm layers are high -- from 10 km up at the poles to 17 km altitude at the equator -- and it was thought storms could not pierce it. For example, the distinctive flattened "anvil" shape at the top of large thunderstorms is created as the storm pushes against the stratosphere.

Dust from the Nabro volcano, being slightly heavier, settled out, but the monsoon lofted volcanic gas and the lighter liquid droplets into the stratosphere where they were detected by the Canadian Space Agency's OSIRIS instrument aboard the Swedish satellite Odin. The Nabro volcano caused the largest stratospheric aerosol load ever recorded by OSIRIS in its more than 10 years of flight.

OSIRIS, designed in part at the U of S, is used to study the upper atmosphere, particularly the ozone layer and atmospheric aerosols. Originally intended for a two-year mission, the instrument has been functioning flawlessly since its launch in 2001. It circles Earth from pole to pole once every hour and a half, downloading fresh data to the analysis centre at the U of S campus.

"There are only a few instruments that can measure stratospheric aerosols, and OSIRIS is one of them," Bourassa says. "It's become extremely important for climate studies, because we've captured more than a full decade of data. The longer it's up, the more valuable it becomes."

The hope is these latest findings will provide another piece of the puzzle to allow more accurate models of climate behaviour and change.

Funding for this research was provided by NSERC, the Canadian Space Agency, the U.S. National Science Foundation, with support from the NASA Aura Science Team.


Story Source:

The above story is based on materials provided by University of Saskatchewan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adam E. Bourassa, Alan Robock, William J. Randel, Terry Deshler, Landon A. Rieger, Nicholas D. Lloyd, E. J. (Ted) Llewellyn, and Douglas A. Degenstein. Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport. Science, 6 July 2012: 78-81 DOI: 10.1126/science.1219371

Cite This Page:

University of Saskatchewan. "Smaller volcanoes could cool climate." ScienceDaily. ScienceDaily, 5 July 2012. <www.sciencedaily.com/releases/2012/07/120705194132.htm>.
University of Saskatchewan. (2012, July 5). Smaller volcanoes could cool climate. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/07/120705194132.htm
University of Saskatchewan. "Smaller volcanoes could cool climate." ScienceDaily. www.sciencedaily.com/releases/2012/07/120705194132.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins