Featured Research

from universities, journals, and other organizations

Secrets of parasites' replication unraveled

Date:
July 10, 2012
Source:
University of Massachusetts at Amherst
Summary:
A group of diseases that kill millions of people each year can't be touched by antibiotics, and some treatment is so harsh the patient can't survive it. They're caused by parasites, and for decades researchers have searched for a "magic bullet" to kill them without harming the patient. Now microbiologists report the first detailed characterization of the way key proteins in the model parasite Trypanosoma brucei organize to replicate its mitochondrial DNA.

A group of diseases that kill millions of people each year can't be touched by antibiotics, and some treatment is so harsh the patient can't survive it. They're caused by parasites, and for decades researchers have searched for a "magic bullet" to kill them without harming the patient. Now, a team of microbiologists at the University of Massachusetts Amherst has made an advance that could one day lead to a new weapon for fighting parasitic diseases such as African sleeping sickness, chagas disease and leishmaniasis.

Related Articles


In the cover article of the current issue of Eukaryotic Cell, parasitologists Michele Klingbeil, doctoral candidate Jeniffer Concepción-Acevedo and colleagues report the first detailed characterization of the way key proteins in the model parasite Trypanosoma brucei organize to replicate its mitochondrial DNA (mtDNA). Understanding this spatial and temporal coordination could mean a foot in the door to launch new attacks on one of the parasites' essential cell processes, Klingbeil says.

She adds, "Parasites such as T. brucei, which causes African sleeping sickness, are not straightforward to treat because they're too much like our own cells. Antibiotics are ineffective, so we treat them as invaders, with toxic chemicals. We are trying to find their weaknesses so we can exploit those and eventually develop a very selective, effective and acceptable treatment."

Advances have not come easily, in part because these parasites have the most complex mitochondrial genome structure in nature, say Klingbeil and Concepción-Acevedo, the lead researcher on the project. To tackle it, they've focused on the trypanosome parasites' extremely complex method of mtDNA replication, which involves kinetoplast DNA or kDNA. Its core components are very unlike DNA replication in animals and human hosts, Klingbeil says, "so if we can inhibit the replication process and take away the kDNA, the parasites will die. That's one way we might be able to kill them."

Trypanosomes' kDNA is found as a nucleoid in the mitochondrion, where it holds many copies of catenated or networked minicircles and maxicircles that look like medieval chain mail under the microscope. These molecules pass information on to daughter cells via DNA polymerases whose job it is to copy all circles in the network. Trypanosomes have six mtDNA polymerases, while humans have just one.

To figure out how these trypanosomal polymerases know when to initiate DNA replication, Concepción-Acevedo set up immunofluorescence experiments focused on tracking a particular one, known as mtDNA polymerase ID (POLID). By fluorescent labeling the POLID protein and tracking it over space and time, Concepción-Acevedo quantified it and clarified its relationship to the overall replication process for the first time in a very discrete time window. The approach immediately paid off.

Klingbeil says, "As soon as Jeny began looking more closely at POLID localization she discovered a novel mechanism for how this protein participates in kDNA replication." In response to kDNA changes during the replication cycle, POLID was dynamically redistributing, or changing location, from the mitochondrial matrix to concentrated foci around the kDNA, and co-localizing with replicating kDNA molecules.

"This had been hypothesized, but never seen before," Klingbeil explains. It was amazing to witness. We visualized a mitochondrial replication protein undergoing dynamic localization for the first time, and linked it to DNA synthesis. No one had ever been able to do that in any mitochondrial DNA replication system before."

This important discovery explains how POLID engages in kDNA replication and opens up new avenues to study and intervene in mitochondrial protein dynamics, say the two parasitologists. Their ultimate success would be to find a chemical to inhibit POLID from carrying out its role during replication and target all parasites with kDNA structures.

This work was funded by the National Institutes of Health's National Institute of Allergy and Infectious Diseases. Support for Concepción-Acevedo also came from NSF's Northeast Alliance for Graduate Education and the Professoriate program.


Story Source:

The above story is based on materials provided by University of Massachusetts at Amherst. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Concepcion-Acevedo, J. Luo, M. M. Klingbeil. Dynamic Localization of Trypanosoma brucei Mitochondrial DNA Polymerase ID. Eukaryotic Cell, 2012; 11 (7): 844 DOI: 10.1128/EC.05291-11

Cite This Page:

University of Massachusetts at Amherst. "Secrets of parasites' replication unraveled." ScienceDaily. ScienceDaily, 10 July 2012. <www.sciencedaily.com/releases/2012/07/120710141940.htm>.
University of Massachusetts at Amherst. (2012, July 10). Secrets of parasites' replication unraveled. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/07/120710141940.htm
University of Massachusetts at Amherst. "Secrets of parasites' replication unraveled." ScienceDaily. www.sciencedaily.com/releases/2012/07/120710141940.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins