Featured Research

from universities, journals, and other organizations

Global warming harms lakes

Date:
July 16, 2012
Source:
University of Zurich
Summary:
Global warming affects lakes. Based on the example of Lake Zurich, researchers have demonstrated that there is insufficient water turnover in the lake during the winter and harmful Burgundy blood algae are increasingly thriving. The warmer temperatures are thus compromising the successful lake clean-ups of recent decades.  

In the fall, the body of water already turns over at a depth of between zero and 20 meters and the Planktothrix comes to the surface from depths of 15 meters. It can form visible masses (blooms) at the surface.
Credit: Limnologische Station, UZH

Global warming also affects lakes. Based on the example of Lake Zurich, researchers from the University of Zurich demonstrate that there is insufficient water turnover in the lake during the winter and harmful Burgundy blood algae are increasingly thriving. The warmer temperatures are thus compromising the successful lake clean-ups of recent decades.

Many large lakes in Central Europe became heavily overfertilized in the twentieth century through sewage. As a result, algal blooms developed and cyanobacteria (photosynthetic bacteria) especially began to appear en masse. Some of these organisms form toxins that can compromise the use of the lake water. Dying algal blooms consume a lot of oxygen, thereby reducing the oxygen content in the lake with negative consequences for the fish stocks.

The problem with overfertilization was not merely the absolute amount of oxygen and phosphorus, the two most important nutrients for algae. Humans have also changed the ratio between the two nutrients: The phosphorus load in lakes has been reduced vastly in recent decades, yet pollution with nitrogen compounds has not decreased on the same scale. The current ratio between the nutrients can thus trigger a mass appearance of certain cyanobacteria, even in lakes that have been deemed "restored."

Burgundy blood algae grow more rapidly

"The problem today is that mankind is changing two sensitive lake properties at the same time, namely the nutrient ratios and, with global warming, water temperature," explains Thomas Posch, a limnologist from the University of Zurich. In collaboration with Zurich Water Supply, he analyzed 40 years' worth of data in a study that has just been published in Nature Climate Change.

The evaluation of this historical data on Lake Zurich reveals that the cyanobacteria Planktothrix rubescens, more commonly known as Burgundy blood algae, has developed increasingly denser blooms in the last 40 years. Like many other cyanobacteria, Planktothrix contains toxins to protect itself from being eaten by small crabs. Burgundy blood algae were first described in Lake Zurich in 1899 and are a well-known phenomenon for Zurich Water Supply. Consequently, the lake water is painstakingly treated for the drinking-water supply to remove the organism and toxins completely from the raw water.

Warmer lakes have insufficient water turnover

But why does Planktothrix increasingly thrive? The most important natural control of the cyanobacteria blooms occurs in the spring, once the entire lake has cooled down vastly during the winter. Intensive winds trigger the turnover of the surface and deep water. If the turnover is complete, many cyanobacteria die off in the deep waters of Lake Zurich as they cannot withstand the high pressure, which is still 13 bars at depths of 130 meters. Another positive effect of this turnover is the transportation of fresh oxygen to the deep. However, the situation in Lake Zurich has also changed drastically in the last four decades. Global warming causes rising temperatures at the water surface. The current values are between 0.6 and 1.2 degrees Celsius above the 40-year average. The winters were increasingly too warm and the lake water was not able to turn over fully as the temperature difference between the surface and depths posed a physical barrier. The consequences are larger oxygen deficits for a longer period in the lake's deep water and an insufficient reduction of the Burgundy blood algae blooms.

Hope for cold, windy winters

"Unfortunately, we are currently experiencing a paradox. Even though we thought we had partly solved the nutrient problem, in some lakes global warming works against the clean-up measures. Therefore, we primarily need cold winters with strong winds again," says Posch. As far as the researchers are concerned, the winter of 2011/12 was just what the doctor ordered: The low temperatures and heavy storms allowed the lake to turn over completely and ultimately resulted in a reduction in Planktothrix.


Story Source:

The above story is based on materials provided by University of Zurich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thomas Posch, Oliver Kφster, Michaela M. Salcher, Jakob Pernthaler. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change, 2012; DOI: 10.1038/nclimate1581

Cite This Page:

University of Zurich. "Global warming harms lakes." ScienceDaily. ScienceDaily, 16 July 2012. <www.sciencedaily.com/releases/2012/07/120716091917.htm>.
University of Zurich. (2012, July 16). Global warming harms lakes. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/07/120716091917.htm
University of Zurich. "Global warming harms lakes." ScienceDaily. www.sciencedaily.com/releases/2012/07/120716091917.htm (accessed October 21, 2014).

Share This



More Earth & Climate News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) — The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) — Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins