Featured Research

from universities, journals, and other organizations

Scientists connect seawater chemistry with ancient climate change and evolution

Date:
July 19, 2012
Source:
University of Toronto
Summary:
Humans get most of the blame for climate change with little attention paid to the contribution of other natural forces. Now, scientists are shedding light on one potential cause of the cooling trend of the past 45 million years that has everything to do with the chemistry of the world's oceans.

This is the Zagros mountain belt in western Iran as seen from the space shuttle Atlantis. The range forms part of the most extensive belt of water-soluble gypsum on Earth, stretching from Oman to Pakistan, and well into Western India. Scientists suggest that the dissolution of ancient salt deposits caused drastic changes in seawater chemistry, which may have triggered long-term global cooling.
Credit: Photo courtesy of NASA

Humans get most of the blame for climate change, with little attention paid to the contribution of other natural forces. Now, scientists from the University of Toronto and the University of California Santa Cruz are shedding light on one potential cause of the cooling trend of the past 45 million years that has everything to do with the chemistry of the world's oceans.

Related Articles


"Seawater chemistry is characterized by long phases of stability, which are interrupted by short intervals of rapid change," says Professor Ulrich Wortmann in the Department of Earth Sciences at the University of Toronto, lead author of a study to be published in Science this week. "We've established a new framework that helps us better interpret evolutionary trends and climate change over long periods of time. The study focuses on the past 130 million years, but similar interactions have likely occurred through the past 500 million years."

Wortmann and co-author Adina Paytan of the Institute of Marine Sciences at the University of California Santa Cruz point to the collision between India and Eurasia approximately 50 million years ago as one example of an interval of rapid change. This collision enhanced dissolution of the most extensive belt of water-soluble gypsum on Earth, stretching from Oman to Pakistan, and well into Western India -- remnants of which are well exposed in the Zagros mountains.

The authors suggest that the dissolution or creation of such massive gyspum deposits will change the sulfate content of the ocean, and that this will affect the amount of sulfate aerosols in the atmosphere and thus climate. "We propose that times of high sulfate concentrations in ocean water correlate with global cooling, just as times of low concentration correspond with greenhouse periods," says Paytan.

"When India and Eurasia collided, it caused dissolution of ancient salt deposits which resulted in drastic changes in seawater chemistry," Paytan continues. "This may have led to the demise of the Eocene epoch -- the warmest period of the modern-day Cenozoic era -- and the transition from a greenhouse to icehouse climate, culminating in the beginning of the rapid expansion of the Antarctic ice sheet."

The researchers combined data of past seawater sulfur composition, assembled by Paytan in 2004, with Wortmann's recent discovery of the strong link between marine sulfate concentrations and carbon and phosphorus cycling. They were able to explain the seawater sulfate isotope record as a result of massive changes to the accumulation and weathering of gyspum -- the mineral form of hydrated calcium sulfate.

"While it has been known for a long time that gyspum deposits can be formed and destroyed rapidly, the effect of these processes on seawater chemistry has been overlooked," says Wortmann. "The idea represents a paradigm shift in our understanding of how ocean chemistry changes over time and how these changes are linked to climate."


Story Source:

The above story is based on materials provided by University of Toronto. The original article was written by Sean Bettam. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ulrich G. Wortmann, Adina Paytan. Rapid Variability of Seawater Chemistry Over the Past 130 Million Years. Science, 20 July 2012: Vol. 337 no. 6092 pp. 334-336 DOI: 10.1126/science.1220656

Cite This Page:

University of Toronto. "Scientists connect seawater chemistry with ancient climate change and evolution." ScienceDaily. ScienceDaily, 19 July 2012. <www.sciencedaily.com/releases/2012/07/120719141802.htm>.
University of Toronto. (2012, July 19). Scientists connect seawater chemistry with ancient climate change and evolution. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2012/07/120719141802.htm
University of Toronto. "Scientists connect seawater chemistry with ancient climate change and evolution." ScienceDaily. www.sciencedaily.com/releases/2012/07/120719141802.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Fossils & Ruins News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Newsy (Jan. 30, 2015) A long-necked dinosaur from the Jurassic Period was discovered in China. Researchers think it could answer mythology questions. Video provided by Newsy
Powered by NewsLook.com
Battle of Waterloo Artefacts Go on Display at Windsor Castle

Battle of Waterloo Artefacts Go on Display at Windsor Castle

AFP (Jan. 29, 2015) Artefacts from the Battle of Waterloo go on display at Windsor Castle to mark the 200th anniversary of the momentous battle. The exhibition includes contemporary prints, drawings and personal belongings of French Emperor Napoleon. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Mideast Skull Find Sheds Light on Human Ancestors' Trek

Mideast Skull Find Sheds Light on Human Ancestors' Trek

AFP (Jan. 29, 2015) A 55,000-year-old partial skull found in the Middle East gives clues to when our ancestors left their African homeland, and strengthens theories that they co-habited with Neanderthals. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Newsy (Jan. 28, 2015) Wrongly categorized as lizard fossils, snake fossils now show the reptile could have developed earlier than we thought — 70 million years earlier. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Ancient Alteration of Seawater Chemistry Linked With Past Climate Change

July 23, 2012 Scientists have discovered a potential cause of Earth's "icehouse climate" cooling trend of the past 45 million years. It has everything to do with the chemistry of the world's ... read more

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins