Featured Research

from universities, journals, and other organizations

Genetic mutations that cause common childhood brain tumors identified

Date:
July 22, 2012
Source:
Stanford University Medical Center
Summary:
Researchers have identified several gene mutations responsible for the most common childhood brain tumor, called medulloblastoma, adding evidence to the theory that the diagnosis is a group of genetically distinct cancers with different prognoses.

Researchers at the Stanford University School of Medicine and Lucile Packard Children's Hospital have identified several gene mutations responsible for the most common childhood brain tumor, called medulloblastoma, adding evidence to the theory that the diagnosis is a group of genetically distinct cancers with different prognoses. These and accompanying findings are likely to lead to less-toxic, better-targeted treatment approaches over the next two years, the researchers said.

Related Articles


"We tend to treat all medulloblastomas as one disease without taking into account how heterogeneous the tumors are at the molecular level," said Yoon-Jae Cho, MD, an assistant professor of neurology and neurological sciences at Stanford, a pediatric neurologist at Packard Children's and the senior author of the new research. "This paper represents a finer-grained view of the genetic landscape of these tumors and provides us with some leads on how to develop new therapies."

The research, which appeared online in Nature July 22, is part of a large, ongoing effort to characterize genetic errors in medulloblastoma. Two companion studies on which Cho is a co-author will be published simultaneously with his paper. The three papers came from a consortium that involves scientists at Stanford, Packard Children's, the Broad Institute, Children's Hospital Boston, the Dana-Farber Cancer Institute, the German Cancer Research Center, Brandeis University and the Hospital for Sick Children in Toronto.

Current treatment for medulloblastoma, which originates in the cerebellum and affects about 250 U.S. children each year, begins with surgery to remove as much of the tumor as possible. Patients then receive a combination of radiation and chemotherapy, but the treatments are not tailored to the tumor's genetic characteristics.

Cho's team extracted DNA from 92 medulloblastoma tumors and compared it with DNA from matched blood samples from the same patients, uncovering 12 significant "point mutations" -- single-letter errors in the genetic code -- that occurred frequently in the brain cancer. A handful of the mutations had been previously identified in smaller studies of medulloblastoma, but several mutations were novel in both medulloblastoma and in cancer.

Among the newly identified mutations was one in an RNA helicase gene, DDX3X, which Cho said is the second-most common mutation in medulloblastoma tumors. "Mutations in this gene have now also been identified in other tumor types, such as chronic lymphocytic leukemia, and head and neck tumors," he said.

However, the researchers found that it was rare for the same gene mutated in several different patients' tumors. More commonly, mutations involving a set of genes regulating a single biological pathway were found in the tumors -- a pattern that is emerging across cancer genome sequencing efforts.

Though no single tumor in the study carried all 12 mutations, the researchers were able to categorize the tumors according to which mutations they possessed. "We now understand that there are certain tumors with particular genetic signatures that are really resistant to standard treatments," Cho said. Children with medulloblastoma do not routinely have their tumors' genetic signatures characterized, but Cho believes that such characterization coupled with targeted therapies could greatly enhance tumor treatment.

About two-thirds of medulloblastoma patients now survive five years past diagnosis, but many survivors suffer lasting physical or intellectual side effects from their cancer treatments. Drugs tailored to a tumor's genetic profile have the potential to save more patients while reducing side effects, Cho said.

Several of the mutations discovered affect cellular signals that switch large groups of genes on and off. "The dysregulation of these 'epigenetic programs' is becoming a common theme not only in medulloblastoma but across cancer," Cho said. Such pathways may be good targets for cancer drugs; indeed, drugs targeting one such pathway (histone methyltransferases) are currently in pre-clinical development, while agents against another pathway (Hedgehog signaling pathway) are entering phase-2 clinical trials for medulloblastoma.

Cho is the co-chair of a committee within the Pediatric Brain Tumor Consortium that guides which drugs should be moved into clinical trials next. "Our plan is that within the next one to two years we will be able to offer kids a new set of compounds that have a clear biological rationale based on our genomic studies." Cho said. "We want to make sure we're being careful of what we move forward with, but at the same time, for some of these kids we don't have many, if any, effective and durable treatment options."

Cho's collaborators at Stanford included research associate Furong Yu; Gerald Crabtree, PhD, professor of pathology and of developmental biology and a member of the Stanford Cancer Institute; and life science research assistant Amanda Kautzman.

The research was funded by the National Institutes of Health, a St. Baldrick's Foundation Career Development Award, the Beirne Faculty Scholar endowment at Stanford University, German Cancer Aid, the BMBF ICGC-PedBrain project, the Howard Hughes Medical Institute, the Pediatric Brain Tumor Foundation, the Canadian Institutes of Health Research, the Hospital for Sick Children and the Mullarkey Research Fund. Cho consults for Novartis to help develop biomarkers for the company's clinical trial design.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. The original article was written by Erin Digitale. Note: Materials may be edited for content and length.


Journal Reference:

  1. Trevor J. Pugh, Shyamal Dilhan Weeraratne, Tenley C. Archer, Daniel A. Pomeranz Krummel, Daniel Auclair, James Bochicchio, Mauricio O. Carneiro, Scott L. Carter, Kristian Cibulskis, Rachel L. Erlich, Heidi Greulich, Michael S. Lawrence, Niall J. Lennon, Aaron McKenna, James Meldrim, Alex H. Ramos, Michael G. Ross, Carsten Russ, Erica Shefler, Andrey Sivachenko, Brian Sogoloff, Petar Stojanov, Pablo Tamayo, Jill P. Mesirov, Vladimir Amani, Natalia Teider, Soma Sengupta, Jessica Pierre Francois, Paul A. Northcott, Michael D. Taylor, Furong Yu, Gerald R. Crabtree, Amanda G. Kautzman, Stacey B. Gabriel, Gad Getz, Natalie Jδger, David T. W. Jones, Peter Lichter, Stefan M. Pfister, Thomas M. Roberts, Matthew Meyerson, Scott L. Pomeroy, Yoon-Jae Cho. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 2012; DOI: 10.1038/nature11329

Cite This Page:

Stanford University Medical Center. "Genetic mutations that cause common childhood brain tumors identified." ScienceDaily. ScienceDaily, 22 July 2012. <www.sciencedaily.com/releases/2012/07/120722135202.htm>.
Stanford University Medical Center. (2012, July 22). Genetic mutations that cause common childhood brain tumors identified. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2012/07/120722135202.htm
Stanford University Medical Center. "Genetic mutations that cause common childhood brain tumors identified." ScienceDaily. www.sciencedaily.com/releases/2012/07/120722135202.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins