Featured Research

from universities, journals, and other organizations

Traveling through a volcano: How pre-eruption collisions affect what exits a volcano

Date:
July 23, 2012
Source:
Georgia Institute of Technology
Summary:
Scientists widely believe that volcanic particle size is determined by the initial fragmentation process, when bubbly magma deep in the volcano changes into gas-particle flows. But new research indicates a more dynamic process where the amount and size of volcanic ash actually depend on what happens afterward, as the particles race toward the surface.

Mt. St. Helens.
Credit: Image courtesy of Georgia Institute of Technology

How much ash will be injected into the atmosphere during Earth's next volcanic eruption? Recent eruptions have demonstrated our continued vulnerability to ash dispersal, which can disrupt the aviation industry and cause billions of dollars in economic loss. Scientists widely believe that volcanic particle size is determined by the initial fragmentation process, when bubbly magma deep in the volcano changes into gas-particle flows.

But new Georgia Tech research indicates a more dynamic process where the amount and size of volcanic ash actually depend on what happens afterward, as the particles race toward the surface. Their initial size and source depth, as well as the collisions they endure within the conduit, are the differences between palm-sized pumice that hit the ground and dense ash plumes that jet into the atmosphere and can halt aviation. The findings are published in the current edition of Nature Geoscience.

Assistant Professor Josef Dufek used lab experiments and computer simulations to study particle break-up, known as granular disruption, in volcanic eruptions. His team, which included the University of California, Berkeley's Michael Manga and Ameeta Patel, determined that shallow (approximately 500 meters below the surface) fragmentation levels likely cause abundant, large pumice that are often seen in large volcanic eruptions. If the fragmentation begins a few kilometers underground, the volcano is more likely to emit fine-grained ash.

"The longer these particles stay in the conduit, the more often they collide with each other," said Dufek, a faculty member in Georgia Tech's School of Earth and Atmospheric Sciences. "These high-energy collisions break the volcanic particles into fractions of their original size. That's why deeper fragmentations produce small particles. Particles that begin closer to the surface with less energy don't have time for as many collisions before they exit the volcano. They stay more intact, are larger and often contained in pyroclastic flows."

The team collected volcanic rock from California's Medicine Lake volcanic deposit for collision experiments. They also used glass spheres because, like glass, pumice is heated and hardens before crystals are able to form. Using a pumice gun that propels volcanic fragments using compressed gases, Dufek and his team determined that particles must collide at a minimum of 30 meters per second to break into larger pieces.

Using numerical simulations, the researchers concluded that large pumice particles (greater than fist size) will not likely remain intact unless the fragmentation is very shallow. Abundant large pumice rocks in a deposit provide an indication of the depth of fragmentation, which may vary over the course of the eruption. Due to the depth and violent nature of the process, scientists have had little record of the depth of the fragmentation process, even though much of the eruptive dynamics and subsequent hazards are determined in this process.

Dufek and his team will next use the research to better understand the dynamics of one of the most rare natural disasters: super volcanoes, which produced the features in Yellowstone National Park.

"We know very little about the eruption processes during super eruptions," said Dufek. "Indications of their fragmentation levels will provide important clues to their eruptive dynamics, allowing us to study them in new ways."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Josef Dufek, Michael Manga, Ameeta Patel. Granular disruption during explosive volcanic eruptions. Nature Geoscience, 2012; DOI: 10.1038/ngeo1524

Cite This Page:

Georgia Institute of Technology. "Traveling through a volcano: How pre-eruption collisions affect what exits a volcano." ScienceDaily. ScienceDaily, 23 July 2012. <www.sciencedaily.com/releases/2012/07/120723094820.htm>.
Georgia Institute of Technology. (2012, July 23). Traveling through a volcano: How pre-eruption collisions affect what exits a volcano. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2012/07/120723094820.htm
Georgia Institute of Technology. "Traveling through a volcano: How pre-eruption collisions affect what exits a volcano." ScienceDaily. www.sciencedaily.com/releases/2012/07/120723094820.htm (accessed August 30, 2014).

Share This




More Earth & Climate News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) — Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) — The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) — Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins