Featured Research

from universities, journals, and other organizations

Switching the state of matter may provide a novel building block for ultra low power devices

Date:
July 26, 2012
Source:
RIKEN
Summary:
Sixty years after the transistor began a technological revolution that transformed nearly every aspect of our daily lives, a new transistor brings innovations that may help to do so again. The device uses the electrostatic accumulation of electrical charge on the surface of a strongly-correlated material to trigger bulk switching of electronic state. Functional at room temperature and triggered by a potential of only 1 V, the switching mechanism provides a novel building block for ultra low power devices, non-volatile memory and optical switches based on a new device concept.

A schematic and an optical micrograph of a new transistor based on VO2 enabling electrical switching of the state of matter.
Credit: Image courtesy of RIKEN

Sixty years after the transistor began a technological revolution that transformed nearly every aspect of our daily lives, a new transistor brings innovations that may help to do so again. Developed at RIKEN, the device uses the electrostatic accumulation of electrical charge on the surface of a strongly-correlated material to trigger bulk switching of electronic state. Functional at room temperature and triggered by a potential of only 1 V, the switching mechanism provides a novel building block for ultra low power devices, non-volatile memory and optical switches based on a new device concept.

Related Articles


After shrinking for many decades, conventional electronics is approaching quantum scaling limits, motivating the search for alternative technologies to take its place. Among these, strongly-correlated materials, whose electrons interact with each other to produce unusual and often useful properties, have attracted growing attention. One of these properties is triggered in phase transitions: applying a small external voltage can induce a very large change in electric resistance, a mechanism akin to a switch that has many potential applications.

Now, researchers at the RIKEN Advanced Science Institute have created the world's first transistor that harnesses this unique property. Described in a paper in Nature, the device uses an electric-double layer to tune the charge density on the surface of vanadium dioxide (VO2), a well-known classical strongly-correlated material. Thanks to the strong correlation of electrons and electron-lattice coupling in VO2, this surface charge in turn drives localized electrons within the bulk to delocalize, greatly magnifying the change of electronic phase. A potential of only 1 V, they show, is enough to switch the material from an insulator to a metal and trigger an astounding thousand-fold drop in resistance.

The electronic phase, however, is not the only thing that changes in this insulator-to-metal transition: using synchrotron radiation from RIKEN's SPring-8 facility in Harima, the research group analyzed the crystal structure of the VO2, showing that it, too, undergoes a transformation, from monoclinic to tetragonal structure. Electric-field induced bulk transformation of this kind is impossible using conventional semiconductor-based electronics and suggests a wide range of potential applications.

First released over sixty years ago to little fanfare, the transistor has had a dramatic impact on our daily lives, powering the electronic devices we use every day. The new switching mechanism takes this first discovery to a new level, demonstrating that a very small electric potential is enough to control macroscopic electronic states and offering a new route to controlling the state of matter.


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, Y. Tokura. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature, 2012; 487 (7408): 459 DOI: 10.1038/nature11296

Cite This Page:

RIKEN. "Switching the state of matter may provide a novel building block for ultra low power devices." ScienceDaily. ScienceDaily, 26 July 2012. <www.sciencedaily.com/releases/2012/07/120726101723.htm>.
RIKEN. (2012, July 26). Switching the state of matter may provide a novel building block for ultra low power devices. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2012/07/120726101723.htm
RIKEN. "Switching the state of matter may provide a novel building block for ultra low power devices." ScienceDaily. www.sciencedaily.com/releases/2012/07/120726101723.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Dutch Architects Show Off 3D House-Building Prowess

Dutch Architects Show Off 3D House-Building Prowess

Reuters - Innovations Video Online (Mar. 31, 2015) Dutch architects are constructing a 3D-printed canal-side home, which they hope will spark an environmental revolution in the house-building industry. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Stops in China

Solar Plane Stops in China

Reuters - News Video Online (Mar. 31, 2015) Solar Impulse 2 stops over in China&apos;s Chonqing, completing the fifth leg in its bid to become the first solar powered plane to travel around the globe. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Solar Impulse Lands in China After 20-Hour Flight from Myanmar

Solar Impulse Lands in China After 20-Hour Flight from Myanmar

AFP (Mar. 31, 2015) Solar Impulse 2 lands in China, the world&apos;s biggest carbon emitter, completing the fifth leg of its landmark global circumnavigation powered solely by the sun. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins