Featured Research

from universities, journals, and other organizations

Energy efficiency: New drywall building material can cut buildings' energy consumption by 40%

Date:
August 1, 2012
Source:
madrimasd
Summary:
Researchers have developed gypsum boards able to store thermal energy that can reduce up to 40% of energy consumption of a building. The boards, that are combined with passive strategies (sunlight, natural airing), can reduce energy consumption in building up to 40% what contributes to mitigate the problem of energy crisis.

Gypsum board with PCMs installed in a room.
Credit: ©UPM

Researchers at the Universidad Politιcnica de Madrid UPM have patented gypsum boards able to store thermal energy that can reduce up to 40% of energy consumption of a building.

Related Articles


The boards, that are combined with passive strategies (sunlight, natural airing), can reduce energy consumption in building up to 40% what contributes to mitigate the problem of energy crisis, particularly in Spain that we import the 80% of energy.

The research carried out by the group Department of Building and Architectural Technology at the E.T.S. of Architecture of the UPM is based on the incorporation of phase change materials (PCMs) to the boards. This new constructive element is able to store in a 1.5 of thickness, five times the thermal energy of a conventional gypsum board with the same thickness. As a result, this research has achieved to keep local temperature where the board is installed within the comfort area (20-30ΊC) without need of air conditioning systems. In addition, the repayment period is between one and two years.

PCMs are substances that store or release thermal energy by latent heat. Throughout the day, the "energy surplus" (they come from sunlight, electrical appliances, and users) encourages its liquefied, avoiding the local overheating. Throughout the night, when the outside temperature drops, they solidify by releasing the stored energy to the environment, avoiding subcooling. The effect is similar to a thick and heavy wall of high thermal inertia.

There are many applications of PCMs in diverse fields (medical, botanical, sports). Since the early 80's, the PCMs applied to buildings are studied to be integrated in building elements (concrete, plaster, ceramic, glass).

To develop this new material, researchers at the UPM chose plaster because of its availability, extensive use in building, low cost and ease integration of new additives. In addition, the position is always the inner side of the insulation what ensures a better use of its theoretical capacity of thermal storage between 90-95% (useful thermal capacity), compared to 10-15% that is achieved when it is placed in the outer side of the insulation. This is not a new thing, since the 90' the gypsum integration is studied; there is even a commercial product. However, the current percentage of PCMs incorporated in plasterboards is 26% compared to the 45% achieved with this new research. This difference is because these substances deplete the mechanical ability of the constructive element.

In order to avoid problems with gypsum during the liquid phase, they chose microencapsulated paraffin manufactured by BASF as PCMs. Besides, to achieve a high percentage of PCMs in boards and to ensure compliance of mechanical and physics benefits, they added other two additives to the mixture: fibers and fluidizing.

They combined the substances: gypsum, PCMs, fibers and fluidizing by varying the proportions to obtain different compounds. They tested combinations in order to know the physical properties (density, porosity, workability, and setting time) mechanical (hardness, strength, flexibility) and aesthetics. They selected the combination of higher percentage of PCMs, 45% with applicable regulations and thermally tested. In the 20-30 ΊC temperature range, a gypsum board 1.5 cm thick containing this percentage of PCMs can store five times more thermal energy than conventional plasterboard of the same thickness, and the same amount of energy as half-foot hollow brick masonry.


Story Source:

The above story is based on materials provided by madrimasd. Note: Materials may be edited for content and length.


Journal Reference:

  1. Oliver-Ramirez, A.; Garcia-Santos, A.; Neila-Gonzalez, F. J. Physical and mechanical characterization of gypsum boards containing phase change materials for latent heat storage. MATERIALES DE CONSTRUCCION, 61 (303): 465-484 , 2011

Cite This Page:

madrimasd. "Energy efficiency: New drywall building material can cut buildings' energy consumption by 40%." ScienceDaily. ScienceDaily, 1 August 2012. <www.sciencedaily.com/releases/2012/08/120801093624.htm>.
madrimasd. (2012, August 1). Energy efficiency: New drywall building material can cut buildings' energy consumption by 40%. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2012/08/120801093624.htm
madrimasd. "Energy efficiency: New drywall building material can cut buildings' energy consumption by 40%." ScienceDaily. www.sciencedaily.com/releases/2012/08/120801093624.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) — China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) — Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins