Featured Research

from universities, journals, and other organizations

Energy efficiency: New drywall building material can cut buildings' energy consumption by 40%

Date:
August 1, 2012
Source:
madrimasd
Summary:
Researchers have developed gypsum boards able to store thermal energy that can reduce up to 40% of energy consumption of a building. The boards, that are combined with passive strategies (sunlight, natural airing), can reduce energy consumption in building up to 40% what contributes to mitigate the problem of energy crisis.

Gypsum board with PCMs installed in a room.
Credit: ©UPM

Researchers at the Universidad Politιcnica de Madrid UPM have patented gypsum boards able to store thermal energy that can reduce up to 40% of energy consumption of a building.

The boards, that are combined with passive strategies (sunlight, natural airing), can reduce energy consumption in building up to 40% what contributes to mitigate the problem of energy crisis, particularly in Spain that we import the 80% of energy.

The research carried out by the group Department of Building and Architectural Technology at the E.T.S. of Architecture of the UPM is based on the incorporation of phase change materials (PCMs) to the boards. This new constructive element is able to store in a 1.5 of thickness, five times the thermal energy of a conventional gypsum board with the same thickness. As a result, this research has achieved to keep local temperature where the board is installed within the comfort area (20-30ΊC) without need of air conditioning systems. In addition, the repayment period is between one and two years.

PCMs are substances that store or release thermal energy by latent heat. Throughout the day, the "energy surplus" (they come from sunlight, electrical appliances, and users) encourages its liquefied, avoiding the local overheating. Throughout the night, when the outside temperature drops, they solidify by releasing the stored energy to the environment, avoiding subcooling. The effect is similar to a thick and heavy wall of high thermal inertia.

There are many applications of PCMs in diverse fields (medical, botanical, sports). Since the early 80's, the PCMs applied to buildings are studied to be integrated in building elements (concrete, plaster, ceramic, glass).

To develop this new material, researchers at the UPM chose plaster because of its availability, extensive use in building, low cost and ease integration of new additives. In addition, the position is always the inner side of the insulation what ensures a better use of its theoretical capacity of thermal storage between 90-95% (useful thermal capacity), compared to 10-15% that is achieved when it is placed in the outer side of the insulation. This is not a new thing, since the 90' the gypsum integration is studied; there is even a commercial product. However, the current percentage of PCMs incorporated in plasterboards is 26% compared to the 45% achieved with this new research. This difference is because these substances deplete the mechanical ability of the constructive element.

In order to avoid problems with gypsum during the liquid phase, they chose microencapsulated paraffin manufactured by BASF as PCMs. Besides, to achieve a high percentage of PCMs in boards and to ensure compliance of mechanical and physics benefits, they added other two additives to the mixture: fibers and fluidizing.

They combined the substances: gypsum, PCMs, fibers and fluidizing by varying the proportions to obtain different compounds. They tested combinations in order to know the physical properties (density, porosity, workability, and setting time) mechanical (hardness, strength, flexibility) and aesthetics. They selected the combination of higher percentage of PCMs, 45% with applicable regulations and thermally tested. In the 20-30 ΊC temperature range, a gypsum board 1.5 cm thick containing this percentage of PCMs can store five times more thermal energy than conventional plasterboard of the same thickness, and the same amount of energy as half-foot hollow brick masonry.


Story Source:

The above story is based on materials provided by madrimasd. Note: Materials may be edited for content and length.


Journal Reference:

  1. Oliver-Ramirez, A.; Garcia-Santos, A.; Neila-Gonzalez, F. J. Physical and mechanical characterization of gypsum boards containing phase change materials for latent heat storage. MATERIALES DE CONSTRUCCION, 61 (303): 465-484 , 2011

Cite This Page:

madrimasd. "Energy efficiency: New drywall building material can cut buildings' energy consumption by 40%." ScienceDaily. ScienceDaily, 1 August 2012. <www.sciencedaily.com/releases/2012/08/120801093624.htm>.
madrimasd. (2012, August 1). Energy efficiency: New drywall building material can cut buildings' energy consumption by 40%. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/08/120801093624.htm
madrimasd. "Energy efficiency: New drywall building material can cut buildings' energy consumption by 40%." ScienceDaily. www.sciencedaily.com/releases/2012/08/120801093624.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins