Featured Research

from universities, journals, and other organizations

Tropical climate in the Antarctic: Palm trees once thrived on today’s icy coasts 52 million years ago

Date:
August 1, 2012
Source:
Senckenberg Research Institute and Natural History Museum
Summary:
Given the predicted rise in global temperatures in the coming decades, climate scientists are particularly interested in warm periods that occurred in the geological past. Knowledge of past episodes of global warmth can be used to better understand the relationship between climate change, variations in atmospheric carbon dioxide and the reaction of Earth’s biosphere. Scientists have discovered an intense warming phase around 52 million years ago in drill cores obtained from the seafloor near Antarctica — a region that is especially important in climate research.

An armada of icebergs drifting off the Wilkes Land coast of Antarctica.
Credit: Copyright: Roy Davis, Integrated Ocean Drilling Program (IODP).

Given the predicted rise in global temperatures in the coming decades, climate scientists are particularly interested in warm periods that occurred in the geological past. Knowledge of past episodes of global warmth can be used to better understand the relationship between climate change, variations in atmospheric carbon dioxide and the reaction of Earth’s biosphere. An international team led by scientists from the Goethe University and the Biodiversity and Climate Research Centre in Frankfurt, Germany, has discovered an intense warming phase around 52 million years ago in drill cores obtained from the seafloor near Antarctica — a region that is especially important in climate research.

The study published in the journal Nature shows that tropical vegetation, including palms and relatives of today’s tropical Baobab trees, was growing on the coast of Antarctica 52 million years ago. These results highlight the extreme contrast between modern and past climatic conditions on Antarctica and the extent of global warmth during periods of elevated atmospheric carbon dioxide levels.

Around 52 million years ago, the concentration of the greenhouse gas carbon dioxide (CO2) in the atmosphere was more than twice as high as today. “If the current CO2 emissions continue unabated due to the burning of fossil fuels, CO2 concentrations in the atmosphere, as they existed in the distant past, are likely to be achieved within a few hundred years”, explains Prof. Jörg Pross, a paleoclimatologist at the Goethe University and member of the Biodiversity and Climate Research Centre (BiK-F) in Frankfurt, Germany. “By studying naturally occurring climate warming periods in the geological past, our knowledge of the mechanisms and processes in the climate system increases. This contributes enormously to improving our understanding of current human-induced global warming.”

Computer models indicate that future climate warming will be particularly pronounced in high-latitude regions, i.e., near the poles. Until now, however, it has been unclear how Antarctic terrestrial ecosystems responded in the geological past to a greenhouse climate with high atmospheric CO2 concentrations.

The scientists working with Prof. Pross analysed rock samples from drill cores on the seabed, which were obtained off the coast of Wilkes Land, Antarctica, as part of the Integrated Ocean Drilling Program (IODP). The rock samples are between 53 and 46 million years old and contain fossil pollen and spores that are known to originate from the Antarctic coastal region. The researchers were thus able to reconstruct the local vegetation on Antarctica and, accordingly, interpret the presence of tropical and subtropical rainforests covering the coastal region 52 million years ago.

In an area where the Antarctic ice sheet borders the Southern Ocean today, frost-sensitive and warmth-loving plants such as palms and the ancestors of today’s baobab trees flourished 52 million years ago. The scientists’ evaluations show that the winter temperatures on the Wilkes Land coast of Antarctica were warmer than 10 degrees Celsius at that time, despite three months of polar night. The continental interior, however, was noticeably cooler, with the climate supporting the growth of temperate rainforests characterized by southern beech and Araucaria trees of the type common in New Zealand today. Additional evidence of extremely mild temperatures was provided by analysis of organic compounds that were produced by soil bacteria populating the soils along the Antarctic coast.

These new findings from Antarctica also imply that the temperature difference between the low latitudes and high southern latitudes during the greenhouse phase 52 million years ago was significantly smaller than previously thought. “The CO2 content of the atmosphere as assumed for that time interval is not enough on its own to explain the almost tropical conditions in the Antarctic”, says Pross. “Another important factor was the transfer of heat via warm ocean currents that reached Antarctica.” When the warm ocean current collapsed and the Antarctic coast came under the influence of cooler ocean currents, the tropical rainforests including palms and Baobab relatives also disappeared.


Story Source:

The above story is based on materials provided by Senckenberg Research Institute and Natural History Museum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jörg Pross, Lineth Contreras, Peter K. Bijl, David R. Greenwood, Steven M. Bohaty, Stefan Schouten, James A. Bendle, Ursula Röhl, Lisa Tauxe, J. Ian Raine, Claire E. Huck, Tina van de Flierdt, Stewart S. R. Jamieson, Catherine E. Stickley, Bas van de Schootbrugge, Carlota Escutia, Henk Brinkhuis, Henk Brinkhuis, Carlota Escutia Dotti, Adam Klaus, Annick Fehr, Trevor Williams, James A. P. Bendle, Peter K. Bijl, Steven M. Bohaty, Stephanie A. Carr, Robert B. Dunbar, Jhon J. Gonzàlez, Travis G. Hayden, Masao Iwai, Francisco J. Jimenez-Espejo, Kota Katsuki, Gee Soo Kong, Robert M. McKay, Mutsumi Nakai, Matthew P. Olney, Sandra Passchier, Stephen F. Pekar, Jörg Pross, Christina R. Riesselman, Ursula Röhl, Toyosaburo Sakai, Prakash K. Shrivastava, Catherine E. Stickley, Saiko Sugisaki, Lisa Tauxe, Shouting Tuo, Tina van de Flierdt, Kevin Welsh, Masako Yamane. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 2012; 488 (7409): 73 DOI: 10.1038/nature11300

Cite This Page:

Senckenberg Research Institute and Natural History Museum. "Tropical climate in the Antarctic: Palm trees once thrived on today’s icy coasts 52 million years ago." ScienceDaily. ScienceDaily, 1 August 2012. <www.sciencedaily.com/releases/2012/08/120801132339.htm>.
Senckenberg Research Institute and Natural History Museum. (2012, August 1). Tropical climate in the Antarctic: Palm trees once thrived on today’s icy coasts 52 million years ago. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/08/120801132339.htm
Senckenberg Research Institute and Natural History Museum. "Tropical climate in the Antarctic: Palm trees once thrived on today’s icy coasts 52 million years ago." ScienceDaily. www.sciencedaily.com/releases/2012/08/120801132339.htm (accessed July 25, 2014).

Share This




More Earth & Climate News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) — Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) — Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com
Storm Kills Three, Injures 20 at Virginia Campground

Storm Kills Three, Injures 20 at Virginia Campground

Reuters - US Online Video (July 24, 2014) — A likely tornado tears through an eastern Virginia campground, killing three and injuring at least 20. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins