Featured Research

from universities, journals, and other organizations

Turning white fat into energy-burning brown fat: Hope for new obesity and diabetes treatments

Date:
August 2, 2012
Source:
Columbia University Medical Center
Summary:
Medical researchers have identified a mechanism that can give energy-storing white fat some of the beneficial characteristics of energy-burning brown fat. The findings, based on studies of mice and of human fat tissue, could lead to new strategies for treating obesity and type 2 diabetes.

Researchers have identified a mechanism that can give energy-storing white fat some of the beneficial characteristics of energy-burning brown fat. The findings, based on studies of mice and of human fat tissue, could lead to new strategies for treating obesity and type 2 diabetes.
Credit: © Colinda McKie / Fotolia

Columbia University Medical Center (CUMC) researchers have identified a mechanism that can give energy-storing white fat some of the beneficial characteristics of energy-burning brown fat. The findings, based on studies of mice and of human fat tissue, could lead to new strategies for treating obesity and type 2 diabetes. The study was published August 2 in the online edition of the journal Cell.

Related Articles


Humans have two types of fat tissue: white fat, which stores excess energy in the form of triglycerides, and brown fat, which is highly efficient at dissipating stored energy as heat. Newborns have a relative abundance of brown fat, as protection against exposure to cold temperatures. In adults, however, almost all excess energy is stored as white fat.

"Turning white fat into brown fat is an appealing therapeutic approach to staunching the obesity epidemic, but it has been difficult to do so in a safe and effective way," said study leader Domenico Accili, MD, professor of Medicine and the Russell Berrie Foundation Professor at CUMC.

White fat can be "browned" with a class of drugs called thiazolidazines (TZDs), which increase the body's sensitivity to insulin. However, TZDs have many adverse effects -- including liver toxicity, bone loss, and, ironically, weight gain -- which have limited the use of these drugs.

The current study was undertaken to learn more about the function of TZDs, with the ultimate goal of developing better ways to promote the browning of white fat.

Scientists have known that TZDs promote the browning of white fat by activating a cell receptor called peroxisome proliferator-activated receptor-gamma (ppar-gamma), but the exact mechanism was not clear. To learn more, Dr. Accili and his colleagues studied a group of enzymes called sirtuins, which are thought to affect various biological processes, including metabolism.

The researchers had previously shown in mice that when sirtuin activity increases, so does metabolic activity. In the present study, they found that sirtuins boost metabolism by promoting the browning of white fat. "When we sought to identify how sirtuins promote browning, we observed many similarities between the effect of sirtuins and that of TZDs," said lead author Li Qiang, PhD, associate research scientist in Medicine at CUMC.

Sirtuins work by severing the chemical bonds between acetyl groups and proteins, a process known as deacetylation. "So the next question was whether sirtuins remove acetyl groups from ppar-gamma and, indeed, that was what we found," said Dr. Qiang.

To confirm that the deacetylation of ppar-gamma is crucial to the browning of fat, the researchers created a mutant version of ppar-gamma, in effect mimicking the actions of sirtuins. The mutation promoted the development of brown fat-like qualities in white fat.

"Our findings have two important implications," said Dr. Accili. "First, they suggest that TZDs may not be so bad -- if you can find a way to tweak their activity. Second, one way to tweak their activity is by using sirtuin agonists -- that is, drugs that promote sirtuin activity."

"The truth is, making sirtuin agonists has proved to be a real bear -- more promise than fact," he continued. "But now, for the first time, we have a biomarker for good sirtuin activity: the deacetylation of ppar-gamma. In other words, any substance that deacetylates ppar-gamma should in turn promote the browning of white fat and have a beneficial metabolic effect."

Dr. Accili's paper is titled, "Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of Ppar-gamma." The other contributors are Ning Kon (CUMC), Wenhui Zhao (CUMC), Sangkyu Lee (University of Chicago, Chicago, Illinois), Yiying Zhang (CUMC), Michael Rosenbaum (CUMC), Yingming Zhao (University of Chicago), Wei Gu (CUMC), and Stephen R. Farmer (Boston University School of Medicine, Boston, Mass.)

This research was supported by grants from the National Institutes of Health (HL087123, DK58282, DK64773, DK063608, and RR024156).


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Li Qiang, Liheng Wang, Ning Kon, Wenhui Zhao, Sangkyu Lee, Yiying Zhang, Michael Rosenbaum, Yingming Zhao, Wei Gu, Stephen R. Farmer, Domenico Accili. Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of Pparγ. Cell, 2012; 150 (3): 620 DOI: 10.1016/j.cell.2012.06.027

Cite This Page:

Columbia University Medical Center. "Turning white fat into energy-burning brown fat: Hope for new obesity and diabetes treatments." ScienceDaily. ScienceDaily, 2 August 2012. <www.sciencedaily.com/releases/2012/08/120802122305.htm>.
Columbia University Medical Center. (2012, August 2). Turning white fat into energy-burning brown fat: Hope for new obesity and diabetes treatments. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2012/08/120802122305.htm
Columbia University Medical Center. "Turning white fat into energy-burning brown fat: Hope for new obesity and diabetes treatments." ScienceDaily. www.sciencedaily.com/releases/2012/08/120802122305.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins