Featured Research

from universities, journals, and other organizations

Oh, my stars and hexagons! DNA code shapes gold nanoparticles

Date:
August 8, 2012
Source:
University of Illinois at Urbana-Champaign
Summary:
DNA holds the genetic code for all sorts of biological molecules and traits. But researchers have found that DNA's code can similarly shape metallic structures. The team found that DNA segments can direct the shape of gold nanoparticles -- tiny gold crystals that have many applications in medicine, electronics and catalysis. Each of the four DNA bases codes for a different gold particle shape: rough round particles, stars, flat round discs, and hexagons.

University of Illinois chemists found that DNA can shape gold nanoparticle growth similarly to the way it shapes protein synthesis, with different letters of the genetic code producing gold circles, stars and hexagons.
Credit: Li Huey Tan, Zidong Wang and Yi Lu

DNA holds the genetic code for all sorts of biological molecules and traits. But University of Illinois researchers have found that DNA's code can similarly shape metallic structures.

The team found that DNA segments can direct the shape of gold nanoparticles -- tiny gold crystals that have many applications in medicine, electronics and catalysis. Led by Yi Lu, the Schenck Professor of Chemistry at the U. of I., the team published its surprising findings in the journal Angewandte Chemie.

"DNA-encoded nanoparticle synthesis can provide us a facile but novel way to produce nanoparticles with predictable shape and properties," Lu said. "Such a discovery has potential impacts in bio-nanotechnology and applications in our everyday lives such as catalysis, sensing, imaging and medicine."

Gold nanoparticles have wide applications in both biology and materials science thanks to their unique physicochemical properties. Properties of a gold nanoparticle are largely determined by its shape and size, so it is critical to be able to tailor the properties of a nanoparticle for a specific application.

"We wondered whether different combinations of DNA sequences could constitute 'genetic codes' to direct the nanomaterial synthesis in a way similar to their direction of protein synthesis," said Zidong Wang, a recent graduate of Lu's group and the first author of the paper.

Gold nanoparticles are made by sewing tiny gold seeds in a solution of gold salt. Particles grow as gold in the salt solution deposits onto the seeds. Lu's group incubated the gold seeds with short segments of DNA before adding the salt solution, causing the particles to grow into various shapes determined by the genetic code of the DNA.

The DNA alphabet comprises four letters: A, T, G and C. The term genetic code refers to the sequence of these letters, called bases. The four bases and their combinations can bind differently with facets of gold nanoseeds and direct the nanoseeds' growth pathways, resulting in different shapes.

In their experiments, the researchers found that strands of repeating A's produced rough, round gold particles; T's, stars; C's, round, flat discs; G's, hexagons. Then the group tested DNA strands that were a combination of two bases, for example, 10 T's and 20 A's. They found that many of the bases compete with each other resulting in intermediate shapes, although A dominates over T.

Next, the researchers plan to investigate exactly how DNA codes direct nanoparticle growth. They also plan to apply their method to synthesize other types of nanomaterials with novel applications.

The National Science Foundation supported this work.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zidong Wang, Longhua Tang, Li Huey Tan, Jinghong Li, Yi Lu. Discovery of the DNA “Genetic Code” for Abiological Gold Nanoparticle Morphologies. Angewandte Chemie International Edition, 2012; DOI: 10.1002/anie.201203716

Cite This Page:

University of Illinois at Urbana-Champaign. "Oh, my stars and hexagons! DNA code shapes gold nanoparticles." ScienceDaily. ScienceDaily, 8 August 2012. <www.sciencedaily.com/releases/2012/08/120808163208.htm>.
University of Illinois at Urbana-Champaign. (2012, August 8). Oh, my stars and hexagons! DNA code shapes gold nanoparticles. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/08/120808163208.htm
University of Illinois at Urbana-Champaign. "Oh, my stars and hexagons! DNA code shapes gold nanoparticles." ScienceDaily. www.sciencedaily.com/releases/2012/08/120808163208.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins