Featured Research

from universities, journals, and other organizations

Study of fruit fly chromosomes improves understanding of evolution and fertility

Date:
August 10, 2012
Source:
Arizona State University
Summary:
New research explores the evolution of sperm structure and function, through an analysis of Drosophila genes and gene products. The research has important implications for the study of human infertility as well.

The propagation of every animal on the planet is the result of sexual activity between males and females of a given species. But how did things get this way? Why two sexes instead of one? Why are sperm necessary for reproduction and how did they evolve?

These as-yet-unresolved issues fascinate Timothy Karr, a developmental geneticist and evolutionary biologist at Arizona State University's Biodesign Institute. To probe them, he uses a common fruit fly, Drosophila melanogaster -- an organism that has provided science with an enormous treasure-trove of genetic information.

"My research focuses on the evolution of sex and in gamete function," Karr says. "I focus primarily on the sperm side of the sexual equation. I'm interested in how they originated and how they are maintained in populations."

Karr's current study, in collaboration with researchers at the University of Chicago, recently appeared in the journal BMC Biology. The study reexamines an earlier paper that analyzed the sex chromosomes of fruit flies during spermatogenesis -- the process that produces mature sperm from germ cells.

While the previous paper, by Lyudmila M Mikhaylova and Dmitry I Nurminsky, argued against the silencing of sex-linked genes on the X chromosome in Drosophila during meiosis -- a process referred to as Meiotic Sex Chromosome Inactivation (MSCI) -- the reanalysis presented by Karr suggests MSCI is indeed occurring.

The work sheds new light on the evolution of sperm structure and function, through an analysis of Drosophila genes and gene products. As Karr explains, the research has important implications for humans as well: "The more direct, biomedical aspect is that when we learn about the function of a gene that encodes a protein in Drosophila sperm, we can immediately see if there's a relationship between these genes and their functions and known problems with fertility in humans."

Super Fly

Perhaps no other model organism has yielded more insights into human genetics than the tiny fruit fly Drosophila melanogaster. In 1906, Thomas Hunt Morgan of Columbia University began work on D. melanogaster, (one of over 1500 species contained in the Drosophila genus) capitalizing on the species' ease of breeding, rapid generation time and ability to readily produce genetic mutants for study. Morgan's efforts with Drosophila led to the identification of chromosomes as the vector of inheritance for genes, and earned him the 1933 Nobel Prize in Medicine.

Drosophila are yellow-brown in color, have reddish eyes and transverse black rings across their abdomen. Females are about 2.5 millimeters long, while males are slightly smaller and may be easily identified by their darker color.

Most importantly, the similarity in the genetic systems of fruit flies and other eukaryotic organisms including humans makes these model organisms extremely useful analogues for the study of common genetic processes including transcription and translation.

Roughly 75 percent of known human disease genes have recognizable correlates in the fruit fly genome and 50 percent of fly protein sequences have mammalian homologs. (The complete genome of D. melanogaster was completed in 2000.)

Chromosomes: genetic storehouses

Humans have 23 pairs of chromosomes, or 46 chromosomes in all. Of these, 44 are known as autosomes and consist of matched pairs of chromosomes, known as homologous chromosomes. Each homologous chromosome contains the same set of genes in the same locations along the chromosome, though they may appear in differing alleles, which can affect the passing of genetic traits.

The current study however, focuses not on the autosomes but on the remaining pair of chromosomes, known as sex chromosomes. Females contain two X chromosomes, which are homologous, as in the case of the autosomes. By contrast, males are identified as having one X chromosome and one (much smaller) Y chromosome.

While drosophila only have a total of 4 chromosomes, they too display sexual dimorphism, with females carrying the double X chromosomes and males carrying XY. The two X chromosomes in female fruit flies, as in mammals, make them a homozygous sex as compared with the XY condition in males, known as heterozygous.

"There are certain aspects to the composition of these sex chromosomes that have intrigued evolutionary biologists for a long time," Karr notes. One such issue involves an apparent reduction in the number or the level of expression of sex-linked genes on the X chromosome during spermatogenesis. It is believed that this reduction or silencing of genes on the X chromosome may have profound implications for the evolution of sex chromosomes.

During meiotic development of a sperm cell, nature attempts to compensate for the fact that females have two X chromosomes and therefore enjoy a numbers advantage in terms of genes, compared with males. To overcome the bias for female X-linked genes, the X chromosome undergoes inactivation during meiotic sexual differentiation of male gametes, resulting in an underrepresentation of sex-specific genes on the X chromosome. Some of these genes, which may be beneficial to males, are moved from the X chromosome, to the autosomes, where they may be expressed.

The relocation of male-biased genes to the autosomes may be due to a selective advantage favoring genes that move off the X chromosome and therefore avoid X-inactivation during meiosis. Such theories remain controversial however, as statistical analyses are used to evaluate gene frequencies and expression levels, making the proper categorization of genes particularly challenging. "The data we create and generate to support our ideas and hypotheses are messy, there's noise in them," Karr says. "Such noise is inherent in the history of evolution."

In addition to the steady stream of insights into chromosome evolution, Drosophila are being used as a genetic model for a variety of human diseases including Alzheimer's, neurodegenerative disorders, Parkinson's, Huntington's, as well as extending knowledge of the underlying mechanisms involved in aging, oxidative stress, immunity, diabetes, and cancer.


Story Source:

The above story is based on materials provided by Arizona State University. The original article was written by Richard Harth. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maria D Vibranovski, Yong E Zhang, Claus Kemkemer, Hedibert F Lopes, Timothy L Karr, Manyuan Long. Re-analysis of the larval testis data on meiotic sex chromosome inactivation revealed evidence for tissue-specific gene expression related to the drosophila X chromosome. BMC Biology, 2012; 10 (1): 49 DOI: 10.1186/1741-7007-10-49

Cite This Page:

Arizona State University. "Study of fruit fly chromosomes improves understanding of evolution and fertility." ScienceDaily. ScienceDaily, 10 August 2012. <www.sciencedaily.com/releases/2012/08/120810144715.htm>.
Arizona State University. (2012, August 10). Study of fruit fly chromosomes improves understanding of evolution and fertility. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/08/120810144715.htm
Arizona State University. "Study of fruit fly chromosomes improves understanding of evolution and fertility." ScienceDaily. www.sciencedaily.com/releases/2012/08/120810144715.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins