Featured Research

from universities, journals, and other organizations

New key element discovered in pathogenesis of Burkitt lymphoma

Date:
August 13, 2012
Source:
Helmholtz Association of German Research Centres
Summary:
Burkitt lymphoma is a malignant, fast-growing tumor that originates from a subtype of white blood cells of the immune system and often affects internal organs and the central nervous system. Now researchers of the Max Delbrück Center have identified a key element that transforms the immune cells into malignant lymphoma cells. They developed a mouse model that closely resembles Burkitt lymphoma in humans that may help to test new treatment strategies.

Burkitt lymphoma is a malignant, fast-growing tumor that originates from a subtype of white blood cells called B lymphocytes of the immune system and often affects internal organs and the central nervous system. Now Dr. Sandrine Sander and Professor Klaus Rajewsky of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have identified a key element that transforms the immune cells into malignant lymphoma cells. They developed a mouse model that closely resembles Burkitt lymphoma in humans and that may help to test new treatment strategies.

Burkitt lymphoma typically develops in childhood and occurs most frequently in equatorial Africa and South America. This tumor originates from germinal centers of the lymphoid organs (Peyer's patches in the small intestine, lymph nodes and spleen). The germinal center reaction is initiated by mature B cells upon detection of a foreign substance (antigen). These B cells modify their DNA in the course of the reaction, resulting finally in a highly specific antibody response against the antigen.

The B cell receptor (BCR), an antibody presented on the surface of mature B cells, plays a crucial role in the germinal center reaction. In order to optimally recognize the respective antigen and initiate an appropriate immune response, the DNA segments encoding the antibody need to be modified and rearranged. While the processes are complex, DNA breaks occur and error-prone repair mechanisms may lead to genetic mutations associated with cancer development.

It is well established that in Burkitt lymphoma, mistakes in the repair of DNA breaks result in the translocation of the c-MYC oncogene. This gene regulates cell division, and thus its expression is tightly controlled in normal cells. The c-MYC translocation leads to its deregulation, and the affected cells divide in an uncontrolled manner. However, c-MYC overexpression also leads to massive cell death. Therefore c-MYC deregulation by itself is unable to transform normal cells into cancer cells. In Burkitt lymphoma, the apoptosis induction of elevated c-MYC expression must be overcome by additional mutations preventing cell death.

Recently, Professor Rajewsky and his colleagues showed that an enzyme called PI3K is critical for the survival of mature B cells. It activates a signaling pathway that regulates cell growth and counteracts programmed cell death. Based on these findings Dr. Sander and Professor Rajewsky investigated an interaction of c-MYC and PI3K in mouse tumorigenesis in their present study. They demonstrated that PI3K is a key element in Burkitt lymphoma development which enables c-MYC to turn germinal center B lymphocytes into lymphoma cells that divide continuously and escape apoptosis.

However, not every B cell co-expressing c-MYC and PI3K transforms into a lymphoma cell, thus the researchers suspected additional genetic mutations that may play a role in Burkitt lymphomagenesis. Indeed they could identify such aberrations in their mouse model, and a study in human Burkitt lymphoma by Professor Louis Staudt (National Cancer Institute, Bethesda, Maryland, USA), which was published simultaneously in Nature (DOI: 10.1038/nature11378), confirmed these results. Staudt and colleagues showed that Burkitt lymphoma patients, besides having mutations resulting in the activation of the PI3K signaling pathway, carry genetic mutations that resemble those in the mouse.

"In addition to c-MYC deregulation, the activation of the PI3K signaling pathway is a key element in the development of Burkitt lymphoma," said Dr. Sander and Professor Rajewsky. "The inhibition of this signaling pathway could therefore be an effective strategy for treating the disease."


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sandrine Sander, Dinis P. Calado, Lakshmi Srinivasan, Karl Köchert, Baochun Zhang, Maciej Rosolowski, Scott J. Rodig, Karlheinz Holzmann, Stephan Stilgenbauer, Reiner Siebert, Lars Bullinger, Klaus Rajewsky. Synergy between PI3K Signaling and MYC in Burkitt Lymphomagenesis. Cancer Cell, 2012; 22 (2): 167 DOI: 10.1016/j.ccr.2012.06.012

Cite This Page:

Helmholtz Association of German Research Centres. "New key element discovered in pathogenesis of Burkitt lymphoma." ScienceDaily. ScienceDaily, 13 August 2012. <www.sciencedaily.com/releases/2012/08/120813130627.htm>.
Helmholtz Association of German Research Centres. (2012, August 13). New key element discovered in pathogenesis of Burkitt lymphoma. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2012/08/120813130627.htm
Helmholtz Association of German Research Centres. "New key element discovered in pathogenesis of Burkitt lymphoma." ScienceDaily. www.sciencedaily.com/releases/2012/08/120813130627.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) — The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) — A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) — The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) — The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins