Featured Research

from universities, journals, and other organizations

'CYCLOPS' genes may serve as an Achilles' heel in tumor cells

Date:
August 15, 2012
Source:
Dana-Farber Cancer Institute
Summary:
Researchers have identified a new class of genes, dubbed CYCLOPS, that may serve as an Achilles' heel for many forms of cancer.

The genomic tumult within tumor cells has provided scientists at Dana-Farber Cancer Institute and the Broad Institute of MIT and Harvard with clues to an entirely new class of genes that may serve as an Achilles' heel for many forms of cancer.

As reported in the Aug. 17 issue of the journal Cell, the researchers identified 56 such genes, only a few of which had previously been identified as potential targets for cancer therapy. Unlike most such targets, these genes don't cause normal cells to turn cancerous. Instead, they are essential to all cells but have been disrupted as cancer progresses.

"One of the hallmarks of cancer is genomic instability, in which entire sections of chromosomes can be lost or duplicated many times over," says Dana-Farber's Rameen Beroukhim, MD, PhD, who co-led the study. "The result is that genes residing in those areas are either deleted or significantly over-copied."

This roiling of the chromosomes often leads to partial loss of essential genes, leaving cancer cells with barely enough of these genes to survive. Such genes become lifelines for tumor cells. Blocking them with drug molecules is far more likely to harm cancer cells than normal cells.

One way that cancers lose these essential genes is by the loss of nearby tumor suppressor genes, which act as a brake against runaway cell growth. Whereas normal cells harbor two copies of each gene, cancers often lose at least one copy of important tumor suppressor genes, unleashing cell proliferation.

"When tumor suppressor genes are lost, it's common for several nearby genes -- which play no role in cancer development -- to be lost as well," explains the study's co-senior author William Hahn, MD, PhD, of Dana-Farber. Nearly 20 years ago, a scientist published a theory that blocking the remaining copies of these neighboring genes would cripple cancer cells' ability to grow and divide.

The author of that paper, in 1993, was Emil "Tom" Frei III, MD, who was Dana-Farber's director and physician-in-chief from 1972-1991. At the time, the tools didn't exist to determine whether the theory was valid. Only now, with the development of cutting-edge genomic technology, were researchers able to put it to the test.

Investigators began by scanning more than 3,100 samples of different types of cancers, and found that most were missing copies of genes across wide stretches of the genome. They then analyzed data from Project Achilles, a Dana-Farber research effort that has uncovered hundreds of genes critical to the reproduction of cancer cells.

Researchers combined both sets of data to find instances where the loss of one copy of a gene rendered the remaining copy especially important to the cancer cell. From an initial pool of 5,312 genes, researchers identified 56 that met the desired criteria. They dubbed them CYCLOPS genes (for Copy number alterations Yielding Cancer Liabilities Owing to Partial losS), evoking the mythical giant that was dependent on its one eye rather than the normal complement of two.

When researchers checked to see if any of the CYCLOPS genes were neighbors of missing tumor suppressor genes, as Frei had hypothesized two decades earlier, they found that, indeed, many were.

Investigators next surveyed the CYCLOPS genes to see if they have similar or divergent functions within the cell. "We found that they're heavily involved in the components of three critical cell structures: the spliceosome, the ribosome -- which use genetic information to construct proteins for the cell -- and the proteasome, which is a vital protein machine that disposes of unneeded protein material. This suggests that they're required for cell proliferation or survival," Hahn remarks.

When the researchers ranked the 56 CYCLOPS genes by the degree to which the cancer cells were dependent on them, the gene that topped the list was PSMC2. When they administered a PSMC2-blocking agent to mice whose tumors lacked a copy of the PSMC2 gene, the tumors shrank dramatically. "It was a powerful demonstration of the potential of CYCLOPS genes to serve as targets for cancer therapies," Beroukhim explains.

The fact that CYCLOPS genes are often neighbors of tumor suppressor genes makes them even more attractive as drug targets, the study authors say. Tumor suppressor genes themselves have proven exceedingly difficult to target. In cancers with missing copies of tumor suppressor genes, blocking nearby CYCLOPS genes offers a promising way to dampen cell proliferation.

"This study represents a bringing-together of two approaches to understanding the basic mechanics of cancer," Hahn states. "One involves research into the effect of gene copy number changes on cancer. The other is a systematic exploration of the function of individual genes.

"By combining these approaches, we've been able to identify a distinct class of cancer-cell vulnerabilities associated with the copy number loss of essential genes."

The study was funded in part by the National Institutes of Health and the National Cancer Institute (RC2 CA148268, U54 CA143798, K08 CA122833, T32 GM008313, RO1 GM051923-17, and U54 CA112962), the H.L. Snyder Medical Foundation, the V Foundation, a Conquer Cancer Foundation Young Investigator Award, and Sass Foundation Fellowship.

The lead authors of the study are Deepak Nijhawan, MD, PhD, and Travis Zack, of Dana-Farber and the Broad Institute. Co-authors are Matthew Strickland, Rebecca Lamothe, and Shyemaa Shehata of Dana-Farber; Steven Schumacher and Joseph Rosenbluh, PhD, of Dana-Farber and the Broad; Aviad Tsherniak, Glenn Cowley, PhD, Barbara Weir, PhD, Jill Mesirov, PhD, and David Root, PhD, of the Broad; Yin Ren PhD of the Harvard-MIT Division of Health Sciences and Technology; Henrike Besche, PhD, and Alfred Goldberg, PhD, of Harvard Medical School; and Sangeeta Bhatia, MD, PhD, of the Broad and the Harvard-MIT Division of Health Sciences and Technology.


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Cite This Page:

Dana-Farber Cancer Institute. "'CYCLOPS' genes may serve as an Achilles' heel in tumor cells." ScienceDaily. ScienceDaily, 15 August 2012. <www.sciencedaily.com/releases/2012/08/120815131139.htm>.
Dana-Farber Cancer Institute. (2012, August 15). 'CYCLOPS' genes may serve as an Achilles' heel in tumor cells. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/08/120815131139.htm
Dana-Farber Cancer Institute. "'CYCLOPS' genes may serve as an Achilles' heel in tumor cells." ScienceDaily. www.sciencedaily.com/releases/2012/08/120815131139.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins