Featured Research

from universities, journals, and other organizations

Researchers improve soil carbon cycling models

Date:
August 16, 2012
Source:
Oak Ridge National Laboratory
Summary:
A new carbon cycling model better accounts for the carbon dioxide-releasing activity of microbes in the ground, improving scientists’ understanding of the role soil will play in future climate change.

Oak Ridge National Laboratory’s new carbon cycling model could help scientists understand the role of soil in climate change by tracking the microbial processes that break down carbon-rich materials.
Credit: Image courtesy of Oak Ridge National Laboratory

A new carbon cycling model developed at the U.S. Department of Energy's (DOE) Oak Ridge National Laboratory better accounts for the carbon dioxide-releasing activity of microbes in the ground, improving scientists' understanding of the role soil will play in future climate change.

Related Articles


Predicting climate change depends heavily on the cycling of carbon dioxide, which is found in four main reservoirs: the atmosphere, biosphere, oceans and soil. ORNL's model was designed to replace traditional soil carbon cycling models.

"Soil is a big reservoir of carbon," said co-author Melanie Mayes of ORNL's Environmental Sciences Division. "And most of the soil carbon cycling models in use today are so vastly simplified that they ignore the fact that decomposition is actually performed by microbes."

In a paper published in Ecological Applications, the journal of the Ecological Society of America, ORNL researchers integrated data from scientific literature on carbon degradation in soil to form the Microbial-Enzyme-mediated Decomposition, or MEND, model that improves upon previous models.

"Our MEND model does a better job of representing the mechanisms of soil carbon decomposition than existing models," Mayes said.

ORNL's comprehensive model accounts for how the different forms of carbon in soil, or "pools," react with extracellular enzymes excreted into the soil by microbes, allowing scientists to understand how quickly carbon is moving through soils.

The model simulates the carbon cycle, beginning after a decaying plant or animal releases carbon-rich materials into the soil. The organic material is degraded by enzymatic reactions, releasing dissolved carbon molecules that can be absorbed by microbes for growth or metabolism. These processes ultimately result in the release of carbon dioxide.

ORNL's MEND model is the first model able to track degradation by accounting for most of the relevant processes and by estimating the parameters based on a comprehensive literature review. This model, which is based on the physiological functions of microbes, accounts for how temperature affects the ability of microbes to emit carbon dioxide. Soil can either store or release carbon depending on how rapidly carbon-rich materials in the soil are decomposed.

"What we think will happen is that as temperature goes up, microbial physiology will change, altering their ability to break down carbon chains and release carbon dioxide into the atmosphere," Mayes said. "If our models don't account for this process, then our ability to predict future climate change will be less realistic."

For the next six to eight months, ORNL's team will run laboratory-scale experiments to ensure that the MEND model accurately represents the decomposition of carbon compounds in soils. Eventually, team members hope to incorporate their model into the publicly available supercomputing program called the Community Land Model, a module used in the Community Earth System Model that helps researchers predict future climate change.

The study was supported by ORNL's Laboratory Directed Research and Development program, and model development will continue to be funded by DOE's Office of Science.

Co-authors of the paper include Mayes and ORNL's Gangsheng Wang and Wilfred Post.


Story Source:

The above story is based on materials provided by Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gangsheng Wang, Wilfred M. Post, Melanie A. Mayes. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecological Applications, 2012; 120809101644003 DOI: 10.1890/12-0681.1

Cite This Page:

Oak Ridge National Laboratory. "Researchers improve soil carbon cycling models." ScienceDaily. ScienceDaily, 16 August 2012. <www.sciencedaily.com/releases/2012/08/120816170307.htm>.
Oak Ridge National Laboratory. (2012, August 16). Researchers improve soil carbon cycling models. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2012/08/120816170307.htm
Oak Ridge National Laboratory. "Researchers improve soil carbon cycling models." ScienceDaily. www.sciencedaily.com/releases/2012/08/120816170307.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Rarest Cat on Planet Caught Attacking Monkeys on Camera

Rarest Cat on Planet Caught Attacking Monkeys on Camera

Buzz60 (Jan. 30, 2015) An African Golden Cat, the rarest large cat on the planet was recently caught on camera by scientists trying to study monkeys. The cat comes out of nowhere to attack those monkeys. Patrick Jones (@Patrick_E_Jones) has the rest. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins