Featured Research

from universities, journals, and other organizations

Data storage: Ribbon readers

Date:
August 20, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Transistors made from graphene nanoribbons make efficient magnetic field sensors, researchers have found.

Transistors made from graphene nanoribbons make efficient magnetic field sensors, researchers have found.

Graphene -- a single layer of carbon atoms packed in a hexagonal lattice -- has a number of appealing properties owing to its two-dimensional geometry. It has, for one thing, good electrical conductivity that is of interest to high-speed electronic applications. Seng Ghee Tan at the A*STAR Data Storage Institute and co-workers at the National University of Singapore have now shown that graphene has additional applications in magnetic data storage. They have developed a method to measure magnetic fields by detecting changes in the electrical resistance of graphene. "The findings could open up new avenues in the development of miniaturized magnetic field sensors," says Tan.

Electrons move inside graphene almost without any hindrance from the atoms of the two-dimensional carbon sheet. This good transport property is of interest to the development of magnetic field sensors because the change in charge transport in the presence of a magnetic field can lead to a measurable change in electrical resistance. Unfortunately, in previous devices thermal excitations of the electrons at room temperature have dominated over this magnetoresistance effect and so far have hindered the use of graphene for this purpose.

To address this problem, Tan and co-workers used a transistor device made from graphene nanoribbons (see image). Unlike conventional graphene sheets, the geometric restriction of the nanoribbons leads to a gap in the electronic states (bandgap) of the ribbons, which makes them semiconducting similar to silicon.

The nanoribbon transistor modifies the bandgap in a way that prevents the flow of electrical charges through the device (high resistance). A magnetic field, however, causes the bandgap of the nanoribbons to close, so that electrical charges now can travel freely across the device (low resistance). Overall, the researchers were able to change the electrical resistance by more than a factor of a thousand by varying the magnetic field from zero to five teslas. In addition, the electronic bandgap in the off state was sufficiently large so thermal excitations of the electrons were minimal.

"We could suppress the noise considerably because of the energy barrier of the device," says Tan. "As a result, we have a better chance to deliver a high magnetoresistance signal even at room temperature."

For commercial applications, however, further research may be required, as the fabrication of the devices remains challenging. The width of the graphene nanoribbons is only 5 nanometers, which is smaller than the feature size of present commercial transistor structures. Nevertheless, the impressive device performance achieved in the laboratory clearly demonstrates the potential of graphene also for magnetic applications.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Gengchiau Liang, S. Bala Kumar, M. B. A. Jalil, S. G. Tan. High magnetoresistance at room temperature in p-i-n graphene nanoribbons due to band-to-band tunneling effects. Applied Physics Letters, 2011; 99 (8): 083107 DOI: 10.1063/1.3624459

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Data storage: Ribbon readers." ScienceDaily. ScienceDaily, 20 August 2012. <www.sciencedaily.com/releases/2012/08/120820121226.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, August 20). Data storage: Ribbon readers. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2012/08/120820121226.htm
The Agency for Science, Technology and Research (A*STAR). "Data storage: Ribbon readers." ScienceDaily. www.sciencedaily.com/releases/2012/08/120820121226.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins