Featured Research

from universities, journals, and other organizations

Nanomaterials: Shedding light and water

Date:
August 20, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Studies reveal a new way to make superhydrophobic surfaces with better self-cleaning capabilities.

Image of a natural lotus leaf surface with bumps in size of about ten micrometers and spikes of below one micrometer.
Credit: A*STAR

Studies reveal a new way to make superhydrophobic surfaces with better self-cleaning capabilities.

Many plants and animals have textured surfaces on their body for manipulating water. Some textured surfaces are designed, for example, to improve adhesion, while others may enable the collection of water from fog in arid regions. The lotus leaf, in particular, is the most widely cited example of having a textured surface with self-cleaning properties (see image).

The surface of the lotus leaf has a hierarchical structure -- comprising both micrometer and submicrometer features -- that makes it difficult for water droplets to spread. As a result, water droplets form tight spheres that easily roll off the leaf, picking up dirt particles en route. Such functionality can become useful if applied to textiles or windows, and may also be used in analytical techniques for controlling fluid flow.

Linda Yongling Wu at the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now developed a fast and cost-efficient way to fabricate large-scale superhydrophopic surfaces on a hard material -- silica. The researchers used a laser to carve out a microstructured template that they then used to pattern a sol-gel coating. Nanoparticles were subsequently bound to the surface of the cured sol-gel surface to create a second level of hierarchy. The fabrication methodology can be adjusted to achieve different degrees of micro- and nanostructures.

In addition to the new fabrication methodology, Wu and co-workers considered various ways to optimize the water repellency of the textured surface. They found that increasing the surface roughness increases the true area of contact between the liquid and the solid, enhancing its intrinsic wetting properties. However, if the surface features are small enough, water can bridge protrusions leading to the formation of air pockets; the wettability of such a nanostructured material is then calculated as a weighted average of the wettability of the pure material and that of air. These two effects are known respectively as the Wenzel and Cassie-Baxter states.

The researchers derived an equation for calculating the surface contact angle between a water droplet and a silica surface with a certain degree of roughness. They found that there was a transition between the Wenzel to the Cassie-Baxter state, as surface structuring enters the nano dimension. The researchers found that for an optimum superhydrophobic effect, the Cassie-Baxter state must dominate the surface structure to allow a massive 83% of the surface state to be involved in air trapping with only 17% of the liquid drop surface actually in contact with the silica itself.

The researchers are hoping that their findings will generate new ideas for making innovative self-cleaning materials. "We are now developing the technology for real applications, such as easy-clean coating for solar films and structured surfaces for personal care products," says Wu.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technologies


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Linda Y. L. Wu, Q. Shao, X. C. Wang, H. Y. Zheng, C. C. Wong. Hierarchical structured sol–gel coating by laser textured template imprinting for surface superhydrophobicity. Soft Matter, 2012; 8 (23): 6232 DOI: 10.1039/C2SM25371B

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Nanomaterials: Shedding light and water." ScienceDaily. ScienceDaily, 20 August 2012. <www.sciencedaily.com/releases/2012/08/120820121230.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, August 20). Nanomaterials: Shedding light and water. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2012/08/120820121230.htm
The Agency for Science, Technology and Research (A*STAR). "Nanomaterials: Shedding light and water." ScienceDaily. www.sciencedaily.com/releases/2012/08/120820121230.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins