Featured Research

from universities, journals, and other organizations

Promising new drug target discovered for treatment and prevention of heart failure

Date:
August 25, 2012
Source:
European Society of Cardiology (ESC)
Summary:
A promising new drug target for the treatment and prevention of heart failure has been discovered.

A promising new drug target for the treatment and prevention of heart failure has been discovered by researchers at Mount Sinai School of Medicine in New York, NY, US.

The study was presented at the ESC Congress 2012 by principal investigator Professor Roger J. Hajjar, MD.

According to the US Centers for Disease Control and Prevention, about 5.8 million Americans suffer from heart failure and 670,000 new cases are diagnosed each year. One in five people with heart failure die within one year of diagnosis. Heart failure is most often treated with aggressive medical and device therapy, but has no cure. The most common symptoms of heart failure are shortness of breath, feeling tired, and swelling in the ankles, feet, legs, and sometimes the abdomen.

In this study presented at the ESC Congress 2012, researchers identified a new drug target that may treat and/or prevent heart failure. The team evaluated failing human and pig hearts and discovered that SUMO1 (small ubiquitin-like modifier), a small protein that regulates the activity of key transporter genes, was decreased in failing hearts. When the researchers injected SUMO1 into these hearts via gene therapy, cardiac function was significantly improved.

"This indicates that SUMO1 may play a critical role in the pathogenesis of heart failure," said Professor Hajjar, who is research director of Mount Sinai's Wiener Family Cardiovascular Research Laboratories.

Led by Professor Hajjar, the team has been evaluating the transporter gene SERCA2a in patients with severe heart failure as part of the CUPID (Calcium Up-regulation by Percutaneous administration of gene therapy In cardiac Disease) trial. When delivered via an adeno-associated virus vector -- an inactive virus that acts as a medication transporter -- into cardiac cells, SERCA2a demonstrated improvement or stabilisation with minimal side effects. But Professor Hajjar said: "We found that while injection with SERCA2a restored cardiac function, over time the new SERCA2a became dysfunctional. This indicated that something else upstream from SERCA2a was causing the dysfunction in the heart."

Dr Changwon Kho, PhD, and Dr Ah Young Lee, PhD, two experts in the study of cardiac proteins at Mount Sinai School of Medicine, identified SUMO1 as the regulator of SERCA2a, showing that it enhanced its function and improved its stability and enzyme activity. When Professor Hajjar and his team studied human and animal models, they found that when SUMO1 was decreased, SERCA2a became dysfunctional in human hearts, showing that SUMO1 plays a protective role. When the team injected SUMO1 as a gene therapy, they found that it protected SERCA2a from oxidative stresses that are prevalent in heart failure.

"Our experiments over the last four years beginning with the discovery of SUMO1 as an interacting protein of SERCA2a have shown that it plays a critical role in the development of heart failure," said Professor Hajjar. "In fact, SUMO1 may be a therapeutic target at the earliest signs of development and may be beneficial in preventing its progression, a much needed advance for the millions suffering from this disease."

Dr Lisa Tilemann extended the experiments performed in mice and rats in a preclinical model of heart failure in porcine models.

Professor Hajjar said: "We have now clearly shown that SUMO1 gene delivery can enhance cardiac function and stabilize the deteriorations of left ventricular volumes in large animals with severe heart failure. We have also shown that delivering SUMO1 and SERCA2a concomitantly can have synergistic benefits on overall function in heart failure."

Led by Professor Hajjar, the Mount Sinai team discovered the landmark potential of SERCA2a in 1999 and since then has been pursuing its potential as a treatment delivered via gene therapy. The next stages in the research include testing a novel gene therapy construct which will combine both SUMO1 and SERCA2a within one gene therapy vector that will enable the investigators to express both genes simultaneously. Similar to their efforts in the CUPID trial they will explore the delivery of SERCA2a and SUMO1 via gene therapy. Additionally, the research team has developed a cellular test to screen for compounds that may increase the interaction of SERCA2a with SUMO1, evaluating SUMO1 as an adjunctive therapy to SERCA2a.

Professor Hajjar concluded: "While this study re-affirms the importance of SERCA2a as a target in heart failure, our discovery of the critical role that SUMO1 plays in improving SERCA2a function in heart failure will hopefully lead to novel treatment strategies for patients with heart failure."


Story Source:

The above story is based on materials provided by European Society of Cardiology (ESC). Note: Materials may be edited for content and length.


Cite This Page:

European Society of Cardiology (ESC). "Promising new drug target discovered for treatment and prevention of heart failure." ScienceDaily. ScienceDaily, 25 August 2012. <www.sciencedaily.com/releases/2012/08/120825155702.htm>.
European Society of Cardiology (ESC). (2012, August 25). Promising new drug target discovered for treatment and prevention of heart failure. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/08/120825155702.htm
European Society of Cardiology (ESC). "Promising new drug target discovered for treatment and prevention of heart failure." ScienceDaily. www.sciencedaily.com/releases/2012/08/120825155702.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins