Featured Research

from universities, journals, and other organizations

A blueprint for 'affective' aggression

Date:
September 4, 2012
Source:
North Carolina State University
Summary:
Researchers have created a roadmap to areas of the brain associated with affective aggression in mice. This roadmap may be the first step toward finding therapies for humans suffering from affective aggression disorders that lead to impulsive violent acts.

A North Carolina State University researcher has created a roadmap to areas of the brain associated with affective aggression in mice. This roadmap may be the first step toward finding therapies for humans suffering from affective aggression disorders that lead to impulsive violent acts.

Related Articles


Affective aggression differs from defensive aggression or premeditated aggression used by predators, in that the role of affective aggression isn't clear and could be considered maladaptive. NC State neurobiologist Dr. Troy Ghashghaei was interested in finding the areas of the brain engaged with this type of aggressive behavior. Using mice that had been specially bred for affective aggression by his research associate Dr. Derrick L Nehrenberg, Ghashghaei and former undergraduate student Atif Sheikh were able to locate the regions in the mouse brain that switched on and those that were off when the mice displayed affective aggression.

"The brain works by using clusters of neurons that cross communicate at extremely rapid rates, much like a computer," Ghashghaei explains. "One region will process a stimulus, and then that region sends messages to other clusters within the brain, like circuits within a computer. We looked at how the switches flipped in the brains of aggressive mice, and compared that with the brains of completely nonaggressive mice in the same setting, to see how the two processed the situation differently."

They found that affectively aggressive mice demonstrated a large difference in the way their "executive centers" operated when the mice encountered another mouse. "Sensory inputs come in and are sent to the executive center, the part of the brain that decides how to respond to the input," Ghashghaei says. "In the meantime, the information about the response you made gets processed back with either a pleasant or unpleasant association."

According to Ghashghaei, the affectively aggressive mice could react violently because their brains are hardwiredto respond to certain situations aggressively without assessing whether their response to the situation is appropriate or without regard to the behavior's consequences. In addition, affectively aggressive mice may be forming pleasant associations with their violent displays, which would reinforce their aggressive tendencies.

"We cannot say which of the two possibilities underlie the persistent aggressive displays by our mice," Ghashghaei says, "but we can see that the patterns of neuronal activity are very different in the executive centers of these mice. Additionally, there are differences in the neuronal clusters involved with creating pleasant or unpleasant associations to the stimulus or their response. That gives us a few starting spots to begin identifying the mechanisms that underlie these profound behavioral differences."

The regions of the brain that were involved in affective aggression in the mice are similar across all mammalian species. Ghashghaei hopes that his findings in mice will be useful to researchers studying violent behavior in humans, as well as aggression in other animals.

"With the brain, just knowing where to start looking is huge," Ghashghaei says. "Once you have a few targets, you can tease out the possibilities and get to the heart of the problem. We are confident that manipulation of some of the identified targets in our study will disrupt displays of affective aggression in our mouse model."

The researchers' findings appear online in Brain Structure and Function.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Derrick L. Nehrenberg, Atif Sheikh, H. Troy Ghashghaei. Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Structure and Function, 2012; DOI: 10.1007/s00429-012-0445-y

Cite This Page:

North Carolina State University. "A blueprint for 'affective' aggression." ScienceDaily. ScienceDaily, 4 September 2012. <www.sciencedaily.com/releases/2012/09/120904150115.htm>.
North Carolina State University. (2012, September 4). A blueprint for 'affective' aggression. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2012/09/120904150115.htm
North Carolina State University. "A blueprint for 'affective' aggression." ScienceDaily. www.sciencedaily.com/releases/2012/09/120904150115.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins