Featured Research

from universities, journals, and other organizations

Strategy developed to improve delivery of medicines to the brain

Date:
September 7, 2012
Source:
National Institute of Environmental Health Sciences (NIEHS)
Summary:
New research offers a possible strategy for treating central nervous system diseases, such as brain and spinal cord injury, brain cancer, epilepsy, and neurological complications of HIV. The experimental treatment method allows small therapeutic agents to safely cross the blood-brain barrier in laboratory rats by turning off P-glycoprotein, one of the main gatekeepers preventing medicinal drugs from reaching their intended targets in the brain.

New research offers a possible strategy for treating central nervous system diseases, such as brain and spinal cord injury, brain cancer, epilepsy, and neurological complications of HIV. The experimental treatment method allows small therapeutic agents to safely cross the blood-brain barrier in laboratory rats by turning off P-glycoprotein, one of the main gatekeepers preventing medicinal drugs from reaching their intended targets in the brain.

The findings appeared online Sept. 4 in the Proceedings of the National Academy of Sciences, and is the result of a study from scientists at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health.

"Many promising drugs fail because they cannot cross the blood-brain barrier sufficiently to provide a therapeutic dose to the brain," said David Miller, Ph.D., head of the Laboratory of Toxicology and Pharmacology at NIEHS, and leader of the team that performed the study. "We hope our new strategy will have a positive impact on people with brain disorders in the future."

In a two-pronged approach, the research team first determined that treating rat brain capillaries with the multiple sclerosis drug marketed as Gilenya (fingolimod) stimulated a specific biochemical signaling pathway in the blood-brain barrier that rapidly and reversibly turned off P-glycoprotein. Team members then pretreated rats with fingolimod, and administered three other drugs that P-glycoprotein usually transports away from the brain. They observed a dramatic decline in P-glycoprotein transport activity, which led to a threefold to fivefold increase in brain uptake for each of the three drugs.

Ronald Cannon, Ph.D., is a staff scientist in the Miller lab and first author on the paper. He said one of the burning questions the team wants to tackle next is to understand how the signaling system turns off P-glycoprotein. He equates the mechanism to what happens when a person flips a light switch.

"If you physically turn off a light using the button on the wall, the light will go out because the electrical current to the light bulb has been interrupted," Cannon explained. "But what happens when the signaling pathway shuts down P-glycoprotein? Does it bring in another protein to bind to the pump, take away its energy source, modify the structure of the pump, or something else?"

Cannon said the paper's findings open a new way of thinking regarding targets for drug design, a thought that is emotionally gratifying for him and many other researchers whose scientific discoveries generally don't directly translate into helping people with illnesses.

"Although much more research needs to be done, delivering therapeutics to the central nervous system is one of the final frontiers of pharmacotherapy, Cannon added."


Story Source:

The above story is based on materials provided by National Institute of Environmental Health Sciences (NIEHS). Note: Materials may be edited for content and length.


Journal Reference:

  1. R. E. Cannon, J. C. Peart, B. T. Hawkins, C. R. Campos, D. S. Miller. Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1203534109

Cite This Page:

National Institute of Environmental Health Sciences (NIEHS). "Strategy developed to improve delivery of medicines to the brain." ScienceDaily. ScienceDaily, 7 September 2012. <www.sciencedaily.com/releases/2012/09/120907095519.htm>.
National Institute of Environmental Health Sciences (NIEHS). (2012, September 7). Strategy developed to improve delivery of medicines to the brain. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2012/09/120907095519.htm
National Institute of Environmental Health Sciences (NIEHS). "Strategy developed to improve delivery of medicines to the brain." ScienceDaily. www.sciencedaily.com/releases/2012/09/120907095519.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins